
Lecture 14

Dijkstra’s Algorithm

Source: CLRS and Slides of Prof. Surender Baswana



Weighted Graphs



Weighted Graphs

Defn: A weighted graph  is graph with a weight function  mapping edgesG = (V, E) w : E → ℝ



Weighted Graphs

Defn: A weighted graph  is graph with a weight function  mapping edgesG = (V, E) w : E → ℝ
to real-valued weights.



Weighted Graphs

Defn: A weighted graph  is graph with a weight function  mapping edgesG = (V, E) w : E → ℝ
to real-valued weights.

Example:



Weighted Graphs

Defn: A weighted graph  is graph with a weight function  mapping edgesG = (V, E) w : E → ℝ
to real-valued weights.

s
t

v

u x
y

w

1

3

4

2
3

62

8

1

Example:



Weighted Graphs



Weighted Graphs

Defn: Weight of a path is the sum of the weights of the edges in that path.



Weighted Graphs

Defn: Weight of a path is the sum of the weights of the edges in that path. In a weighted graph, 



Weighted Graphs

Defn: Weight of a path is the sum of the weights of the edges in that path. In a weighted graph, 

a shortest-path between two vertices is the path with the least weight. 



Weighted Graphs

Defn: Weight of a path is the sum of the weights of the edges in that path.

Example:

In a weighted graph, 

a shortest-path between two vertices is the path with the least weight. 



Weighted Graphs

s
t

v

u x
y

w

1

3

4

2
3

62

8

1

Defn: Weight of a path is the sum of the weights of the edges in that path.

Example:

In a weighted graph, 

a shortest-path between two vertices is the path with the least weight. 



Weighted Graphs

s
t

v

u x
y

w

1

3

4

2
3

62

8

1

Defn: Weight of a path is the sum of the weights of the edges in that path.

Example:

In a weighted graph, 

a shortest-path between two vertices is the path with the least weight. 



Weighted Graphs

s
t

v

u x
y

w

1

3

4

2
3

62

8

1

Defn: Weight of a path is the sum of the weights of the edges in that path.

Example:

In a weighted graph, 

a shortest-path between two vertices is the path with the least weight. 

In the below graph shortest path from  to  is of weight .s w 6



Single-Source Shortest Path Problem



Single-Source Shortest Path Problem

Let  denote the weight of a shortest path from  to .δ(s, v) s v



Single-Source Shortest Path Problem

Let  denote the weight of a shortest path from  to .δ(s, v) s v

If  is not reachable (or connected) from , then .v s δ(s, v) = ∞



Single-Source Shortest Path Problem

SSSP:

Let  denote the weight of a shortest path from  to .δ(s, v) s v

If  is not reachable (or connected) from , then .v s δ(s, v) = ∞



Single-Source Shortest Path Problem

SSSP:

     Input: A weighted graph  with weight function  and a vertex .G = (V, E) w : E → ℝ s

Let  denote the weight of a shortest path from  to .δ(s, v) s v

If  is not reachable (or connected) from , then .v s δ(s, v) = ∞



Single-Source Shortest Path Problem

SSSP:

     Input: A weighted graph  with weight function  and a vertex .G = (V, E) w : E → ℝ s
     Output: Compute distance from  to every other vertex. That is, an array , s d[1 : |V | ]

Let  denote the weight of a shortest path from  to .δ(s, v) s v

If  is not reachable (or connected) from , then .v s δ(s, v) = ∞



Single-Source Shortest Path Problem

SSSP:

     Input: A weighted graph  with weight function  and a vertex .G = (V, E) w : E → ℝ s
     Output: Compute distance from  to every other vertex. That is, an array , s d[1 : |V | ]
                   such that .d[i] = δ(s, i)

Let  denote the weight of a shortest path from  to .δ(s, v) s v

If  is not reachable (or connected) from , then .v s δ(s, v) = ∞



Single-Source Shortest Path Problem

SSSP:

     Input: A weighted graph  with weight function  and a vertex .G = (V, E) w : E → ℝ s
     Output: Compute distance from  to every other vertex. That is, an array , s d[1 : |V | ]
                   such that .d[i] = δ(s, i)

Let  denote the weight of a shortest path from  to .δ(s, v) s v

If  is not reachable (or connected) from , then .v s δ(s, v) = ∞

• Dijkstra’s algorithm solves SSSP in graphs with non-negative weights.



Single-Source Shortest Path Problem

SSSP:

     Input: A weighted graph  with weight function  and a vertex .G = (V, E) w : E → ℝ s
     Output: Compute distance from  to every other vertex. That is, an array , s d[1 : |V | ]
                   such that .d[i] = δ(s, i)

Let  denote the weight of a shortest path from  to .δ(s, v) s v

If  is not reachable (or connected) from , then .v s δ(s, v) = ∞

• Dijkstra’s algorithm solves SSSP in graphs with non-negative weights.

• Bellman-Ford’s algorithm solves SSSP in graphs with real weights.



Optimal Subpath Property



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch:



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

2 8 1 2 5 7 3



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

2 8 1 2 5 7 3



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

Why  to  subpath is a 

shortest path from  to ?

u3 u6
u3 u6

2 8 1 2 5 7 3



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

Why  to  subpath is a 

shortest path from  to ?

u3 u6
u3 u6

2 8 1 2 5 7 3

< 14
Suppose  a shorter path from  to ∃ u3 u6



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

Why  to  subpath is a 

shortest path from  to ?

u3 u6
u3 u6

2 8 1 2 5 7 3

< 14
Suppose  a shorter path from  to ∃ u3 u6



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

Why  to  subpath is a 

shortest path from  to ?

u3 u6
u3 u6

2 8 1 2 5 7 3

< 14
Suppose  a shorter path from  to ∃ u3 u6

Then using shorter path from  to 

we can get a shorter path than , 


which is a contradiction.

u3 u6
P



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

Is the proof correct?

2 8 1 2 5 7 3

< 14
Suppose  a shorter path from  to ∃ u3 u6

Then using shorter path from  to 

we can get a shorter path than , 


which is a contradiction.

u3 u6
P



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

Is the proof correct?

2 8 1 2 5 7 3

< 14
Suppose  a shorter path from  to ∃ u3 u6

Then using shorter path from  to 

we can get a shorter path than , 


which is a contradiction.

u3 u6
P No.



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

2 8 1 2 5 7 3

Shorter path from  to  may pass 

through  etc.

u3 u6
u1, u2,< 14



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

2 8 1 2 5 7 3

4
2

Shorter path from  to  going via .u3 u6 u1

32
u7

u8



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

2 8 1 2 5 7 3

4
2

Shorter path from  to  going via .u3 u6 u1

32
u7

u8



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

2 8 1 2 5 7 3

4
2

Shorter path from  to  going via .u3 u6 u1

32

Shorter path than  after 

removing the cycle 

P

u7

u8



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

2 8 1 2 5 7 3

4
2

Shorter path from  to  going via .u3 u6 u1

Now the proof is correct?32

Shorter path than  after 

removing the cycle 

P

u7

u8



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

2 8 1 2 5 7 3

−23−19

20
25

Shorter path from  to  going via .u3 u6 u1

Now the proof is correct?u7

u8



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

2 8 1 2 5 7 3

−23−19

20
25

Shorter path from  to  going via .u3 u6 u1

Lemma is true only when 

weights are non-negative.

u7

u8



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

2 8 1 2 5 7 3

−23−19

20
25

Shorter path from  to  going via .u3 u6 u1

Lemma is true only when 

weights are non-negative.

◼

u7

u8



Dijkstra’s Algorithm: Idea



Dijkstra’s Algorithm: Idea
Let  be the th nearest vertex to .si i s



Dijkstra’s Algorithm: Idea
Let  be the th nearest vertex to .si i s (Assume there are no ties and all the weights are positive.)



Dijkstra’s Algorithm: Idea
Let  be the th nearest vertex to .si i s (Assume there are no ties and all the weights are positive.)

Dijkstra’s algorithm first computes distance of , then ’s, then 's, then ’s, and so on.s1 s2 s3 s4



Dijkstra’s Algorithm: Idea
Let  be the th nearest vertex to .si i s (Assume there are no ties and all the weights are positive.)

Suppose we have calculated the distances of .S = {s1, s2, …, sk}

Dijkstra’s algorithm first computes distance of , then ’s, then 's, then ’s, and so on.s1 s2 s3 s4



Dijkstra’s Algorithm: Idea
Let  be the th nearest vertex to .si i s (Assume there are no ties and all the weights are positive.)

Suppose we have calculated the distances of .S = {s1, s2, …, sk}

Dijkstra’s algorithm first computes distance of , then ’s, then 's, then ’s, and so on.s1 s2 s3 s4

How can we compute distance of ?sk+1



Dijkstra’s Algorithm: Idea
Let  be the th nearest vertex to .si i s (Assume there are no ties and all the weights are positive.)

Suppose we have calculated the distances of .S = {s1, s2, …, sk}

s sk+1

Dijkstra’s algorithm first computes distance of , then ’s, then 's, then ’s, and so on.s1 s2 s3 s4

How can we compute distance of ?sk+1



Dijkstra’s Algorithm: Idea
Let  be the th nearest vertex to .si i s (Assume there are no ties and all the weights are positive.)

Suppose we have calculated the distances of .S = {s1, s2, …, sk}

Shortest path to  from .sk+1 s

s sk+1

Dijkstra’s algorithm first computes distance of , then ’s, then 's, then ’s, and so on.s1 s2 s3 s4

How can we compute distance of ?sk+1



Dijkstra’s Algorithm: Idea
Let  be the th nearest vertex to .si i s (Assume there are no ties and all the weights are positive.)

Suppose we have calculated the distances of .S = {s1, s2, …, sk}

Shortest path to  from .sk+1 s

s x sk+1

Dijkstra’s algorithm first computes distance of , then ’s, then 's, then ’s, and so on.s1 s2 s3 s4

How can we compute distance of ?sk+1



Dijkstra’s Algorithm: Idea
Let  be the th nearest vertex to .si i s (Assume there are no ties and all the weights are positive.)

Suppose we have calculated the distances of .S = {s1, s2, …, sk}

Shortest path to  from .sk+1 s

s x sk+1

What can we say about x?

Dijkstra’s algorithm first computes distance of , then ’s, then 's, then ’s, and so on.s1 s2 s3 s4

How can we compute distance of ?sk+1



Dijkstra’s Algorithm: Idea
Let  be the th nearest vertex to .si i s (Assume there are no ties and all the weights are positive.)

Suppose we have calculated the distances of .S = {s1, s2, …, sk}

Shortest path to  from .sk+1 s

s x sk+1

What can we say about x?
 should be  for some .x si i ≤ k

Dijkstra’s algorithm first computes distance of , then ’s, then 's, then ’s, and so on.s1 s2 s3 s4

How can we compute distance of ?sk+1



Dijkstra’s Algorithm: Idea
Let  be the th nearest vertex to .si i s (Assume there are no ties and all the weights are positive.)

Suppose we have calculated the distances of .S = {s1, s2, …, sk}

Shortest path to  from .sk+1 s

s x sk+1

Dijkstra’s algorithm first computes distance of , then ’s, then 's, then ’s, and so on.s1 s2 s3 s4

How can we compute distance of ?sk+1

Clearly,  .d[sk+1] = d[x] + w(x, sk+1)



Dijkstra’s Algorithm: Idea
Let  be the th nearest vertex to .si i s (Assume there are no ties and all the weights are positive.)

Suppose we have calculated the distances of .S = {s1, s2, …, sk}

Shortest path to  from .sk+1 s

s x sk+1

Dijkstra’s algorithm first computes distance of , then ’s, then 's, then ’s, and so on.s1 s2 s3 s4

How can we compute distance of ?sk+1

Clearly,  .d[sk+1] = d[x] + w(x, sk+1)

We don’t know , so we compute this value 

over all  and pick the minimum one. 

x
x ∈ S



Dijkstra’s Algorithm: Idea
Let  be the th nearest vertex to .si i s (Assume there are no ties and all the weights are positive.)

Suppose we have calculated the distances of .S = {s1, s2, …, sk}

Shortest path to  from .sk+1 s

s x sk+1

Dijkstra’s algorithm first computes distance of , then ’s, then 's, then ’s, and so on.s1 s2 s3 s4

How can we compute distance of ?sk+1

Clearly,  .d[sk+1] = d[x] + w(x, sk+1)

We don’t know , so we compute this value 

over all  and pick the minimum one. 

x
x ∈ SWe don’t know , so we compute this value over all 


 and the one with minimum value will be .
sk+1

v ∈ V∖S sk+1



Dijkstra’s Algorithm: Sketch



Maintain a set of explored vertices  for which algorithm has found :S d[u] = δ(s, u)

Dijkstra’s Algorithm: Sketch



Maintain a set of explored vertices  for which algorithm has found :S d[u] = δ(s, u)

Step 1: Initialise , .S = {s} d[s] = 0

Dijkstra’s Algorithm: Sketch



Maintain a set of explored vertices  for which algorithm has found :S d[u] = δ(s, u)

Step 1: Initialise , .S = {s} d[s] = 0

Step 2: Choose an unexplored vertex  from  which minimizes:v V(G)∖S

Dijkstra’s Algorithm: Sketch



Maintain a set of explored vertices  for which algorithm has found :S d[u] = δ(s, u)

Step 1: Initialise , .S = {s} d[s] = 0

Step 2: Choose an unexplored vertex  from  which minimizes:v V(G)∖S

π[v] = min
(u,v)∈E, u∈S

d[u] + w(u, v)

Dijkstra’s Algorithm: Sketch



Maintain a set of explored vertices  for which algorithm has found :S d[u] = δ(s, u)

Step 1: Initialise , .S = {s} d[s] = 0

Step 2: Choose an unexplored vertex  from  which minimizes:v V(G)∖S

π[v] = min
(u,v)∈E, u∈S

d[u] + w(u, v)

Add  to  and set .v S d[v] = Π[v]

Dijkstra’s Algorithm: Sketch



Maintain a set of explored vertices  for which algorithm has found :S d[u] = δ(s, u)

Step 1: Initialise , .S = {s} d[s] = 0

Step 2: Choose an unexplored vertex  from  which minimizes:v V(G)∖S

π[v] = min
(u,v)∈E, u∈S

d[u] + w(u, v)

Add  to  and set .v S d[v] = Π[v]

Dijkstra’s Algorithm: Sketch

Step 3: Go to Step 2 if it can be performed.


