Lecture 14

Dijkstra’s Algorithm

Source: CLRS and Slides of Prof. Surender Baswana

Weighted Graphs

Weighted Graphs

Defn: A weighted graph G = (V, E) is graph with a weight function w : £ — R mapping edges

Weighted Graphs

Defn: A weighted graph G = (V, E) is graph with a weight function w : £ — R mapping edges

to real-valued weights.

Weighted Graphs

Defn: A weighted graph G = (V, E) is graph with a weight function w : £ — R mapping edges

to real-valued weights.

Example:

Weighted Graphs

Defn: A weighted graph G = (V, E) is graph with a weight function w : £ — R mapping edges

to real-valued weights.

Example:

Weighted Graphs

Weighted Graphs

Defn: Weight of a path is the sum of the weights of the edges in that path.

Weighted Graphs

Defn: \Weight of a path is the sum of the weights of the edges in that path. In a weighted graph,

Weighted Graphs

Defn: \Weight of a path is the sum of the weights of the edges in that path. In a weighted graph,

a shortest-path between two vertices is the path with the least weight.

Weighted Graphs

Defn: \Weight of a path is the sum of the weights of the edges in that path. In a weighted graph,

a shortest-path between two vertices is the path with the least weight.

Example:

Weighted Graphs

Defn: \Weight of a path is the sum of the weights of the edges in that path. In a weighted graph,

a shortest-path between two vertices is the path with the least weight.

Example:

Weighted Graphs

Defn: \Weight of a path is the sum of the weights of the edges in that path. In a weighted graph,

a shortest-path between two vertices is the path with the least weight.

Example:

Weighted Graphs

Defn: \Weight of a path is the sum of the weights of the edges in that path. In a weighted graph,

a shortest-path between two vertices is the path with the least weight.

Example: In the below graph shortest path from s to w is of weight 6.

Single-Source Shortest Path Problem

Single-Source Shortest Path Problem

Let 0(s, v) denote the weight of a shortest path from s to v.

Single-Source Shortest Path Problem

Let 0(s, v) denote the weight of a shortest path from s to v.

If v is not reachable (or connected) from s, then (s, v) = .

Single-Source Shortest Path Problem

Let 0(s, v) denote the weight of a shortest path from s to v.

If v is not reachable (or connected) from s, then (s, v) = .

SSSP:

Single-Source Shortest Path Problem

Let 0(s, v) denote the weight of a shortest path from s to v.

If v is not reachable (or connected) from s, then (s, v) = .

SSSP:
Input: A weighted graph G = (V, E) with weight function w : £ — R and a vertex s.

Single-Source Shortest Path Problem

Let 0(s, v) denote the weight of a shortest path from s to v.

If v is not reachable (or connected) from s, then (s, v) = .

SSSP:
Input: A weighted graph G = (V, E) with weight function w : £ — R and a vertex s.

Output: Compute distance from s to every other vertex. That is, an array d[1 : | V],

Single-Source Shortest Path Problem

Let 0(s, v) denote the weight of a shortest path from s to v.

If v is not reachable (or connected) from s, then (s, v) = .

SSSP:
Input: A weighted graph G = (V, E) with weight function w : £ — R and a vertex s.

Output: Compute distance from s to every other vertex. That is, an array d[1 : | V],

such that d|i] = o(s, 7).

Single-Source Shortest Path Problem

Let 0(s, v) denote the weight of a shortest path from s to v.

If v is not reachable (or connected) from s, then (s, v) = .

SSSP:
Input: A weighted graph G = (V, E) with weight function w : £ — R and a vertex s.

Output: Compute distance from s to every other vertex. That is, an array d[1 : | V],

such that d|i] = o(s, 7).

® Dijkstra’s algorithm solves SSSP in graphs with non-negative weights.

Single-Source Shortest Path Problem

Let 0(s, v) denote the weight of a shortest path from s to v.

If v is not reachable (or connected) from s, then (s, v) = .

SSSP:
Input: A weighted graph G = (V, E) with weight function w : £ — R and a vertex s.

Output: Compute distance from s to every other vertex. That is, an array d[1 : | V],

such that d|i] = o(s, 7).

® Dijkstra’s algorithm solves SSSP in graphs with non-negative weights.

® Bellman-Ford’s algorithm solves SSSP in graphs with real weights.

Optimal Subpath Property

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch:

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v.

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v.

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v.

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v.

Why u; to ug subpath is a

shortest path from u; to u.?

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v.

Suppose 3 a shorter path from u; to i,

Why u; to ug subpath is a

shortest path from u; to u.?

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v.

Suppose 3 a shorter path from u; to i,

Why u; to ug subpath is a

shortest path from u; to u.?

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v.

Suppose 3 a shorter path from u; to i,

2 3 |) 5 T ¢« 3
S [Uy Uy Uy Uy Us Ug V
\/‘V‘\/
Then using shorter path from u; to i, \

we can get a shorter path than P, Why u; to u, subpath is a
3 6

which is a contradiction.
shortest path from u; to u.?

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v.

Suppose 3 a shorter path from u; to i,

Then using shorter path from u; to i,

we can get a shorter path than P, s the proof correct?

which is a contradiction.

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v.

Suppose 3 a shorter path from u; to i,

Then using shorter path from u; to i,

we can get a shorter path than P, Is the proof correct? No.

which is a contradiction.

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v.
Shorter path from u; to u, may pass

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v.

\m

Shorter path from u; to u, going via u;.

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v.

\m

Shorter path from u; to u, going via u;.

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v.

Ug
Shorter path than P after 2
removing the cycle \ 4
2 8 1 2 5 7
) Uy Uy Us Uy Us Ue
2

\m

Shorter path from u; to u, going via u;.

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v.

Ug
Shorter path than P after 2
removing the cycle \ 4
2 8 1 2 5 7 3
S U Uy Uy Uy Us U V
’ 3
\ y Now the proof is correct?
7

Shorter path from u; to u, going via u;.

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v.

Ug

20

—19
\ ’ =23 Now the proof is correct?
7

Shorter path from u; to u, going via u;.

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v. \ Lemma is true only when
weights are non-negative.
Ug
25
20
2 8 1 2 5 7 3
S Uy U, Us Uy, Us U 1%

\m

Shorter path from u; to u, going via u;.

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v. \ Lemma is true only when
weights are non-negative.
Ug
25
20
2 8 1 2 5 7 3
S Uy U, Us Uy, Us U 1%

\m

Shorter path from u; to u, going via u;.

Dijkstra’s Algorithm: Idea

Dijkstra’s Algorithm: Idea

Let 5; be the ith nearest vertex to s.

Dijkstra’s Algorithm: Idea

Let 5; be the ith nearest vertex to 5. (Assume there are no ties and all the weights are positive.)

Dijkstra’s Algorithm: Idea

Let 5; be the ith nearest vertex to 5. (Assume there are no ties and all the weights are positive.)

Dijkstra’s algorithm first computes distance of s, then s,'s, then s3's, then s,'s, and so on.

Dijkstra’s Algorithm: Idea

Let 5; be the ith nearest vertex to 5. (Assume there are no ties and all the weights are positive.)
Dijkstra’s algorithm first computes distance of s, then s,'s, then s3's, then s,'s, and so on.

Suppose we have calculated the distances of § = {57, 55, ..., 5, |-

Dijkstra’s Algorithm: Idea

Let 5; be the ith nearest vertex to 5. (Assume there are no ties and all the weights are positive.)
Dijkstra’s algorithm first computes distance of s, then s,'s, then s3's, then s,'s, and so on.
Suppose we have calculated the distances of § = {57, 55, ..., 5, |-

How can we compute distance of s, 7

Dijkstra’s Algorithm: Idea

Let 5; be the ith nearest vertex to 5. (Assume there are no ties and all the weights are positive.)
Dijkstra’s algorithm first computes distance of s, then s,'s, then s3's, then s,'s, and so on.
Suppose we have calculated the distances of § = {57, 55, ..., 5, |-

How can we compute distance of s, 7

Dijkstra’s Algorithm: Idea

Let 5; be the ith nearest vertex to 5. (Assume there are no ties and all the weights are positive.)
Dijkstra’s algorithm first computes distance of s, then s,'s, then s3's, then s,'s, and so on.

Suppose we have calculated the distances of § = {57, 55, ..., 5, |-

How can we compute distance of s, ;7 Shortest path to s, from s.
*o—0—0 - *o—o—0—0

\) Skl

Dijkstra’s Algorithm: Idea

Let 5; be the ith nearest vertex to 5. (Assume there are no ties and all the weights are positive.)
Dijkstra’s algorithm first computes distance of s, then s,'s, then s3's, then s,'s, and so on.

Suppose we have calculated the distances of § = {57, 55, ..., 5, |-

How can we compute distance of s, ;7 Shortest path to s, from s.
*o—0—0 - *o—o—0—0

Dijkstra’s Algorithm: Idea

Let 5; be the ith nearest vertex to 5. (Assume there are no ties and all the weights are positive.)
Dijkstra’s algorithm first computes distance of s, then s,'s, then s3's, then s,'s, and so on.

Suppose we have calculated the distances of § = {57, 55, ..., 5, |-

How can we compute distance of s, ;7 Shortest path to s, from s.
o ——0 -------- o—o—0—0
S X Skl

/

What can we say about x?

Dijkstra’s Algorithm: Idea

Let 5; be the ith nearest vertex to 5. (Assume there are no ties and all the weights are positive.)
Dijkstra’s algorithm first computes distance of s, then s,'s, then s3's, then s,'s, and so on.

Suppose we have calculated the distances of § = {57, 55, ..., 5, |-

How can we compute distance of s, ;7 Shortest path to s, from s.
o ——0 -------- o—o—0—0
S X Skl

/

What can we say about x?

x should be s. for some i < £.

Dijkstra’s Algorithm: Idea

Let 5; be the ith nearest vertex to 5. (Assume there are no ties and all the weights are positive.)
Dijkstra’s algorithm first computes distance of s, then s,'s, then s3's, then s,'s, and so on.

Suppose we have calculated the distances of § = {57, 55, ..., 5, |-

How can we compute distance of s, ;7 Shortest path to s, from s.
o ——0 -------- o—o—0—0
S X Skl

C‘ear‘y, d[Sk-I-l] — d[X] + W(X, Sk-l—l)'

Dijkstra’s Algorithm: Idea

Let 5; be the ith nearest vertex to 5. (Assume there are no ties and all the weights are positive.)

Dijkstra’s algorithm first computes distance of s, then s,'s, then s3's, then s,'s, and so on.

Suppose we have calculated the distances of § = {57, 55, ..., 5, |-

How can we compute distance of s,

? Shortest path to s, from s.

/

A Skt

C‘ear‘y, d[Sk-I-l] — d[X] + W(X, Sk-l—l)'

\ We don't know x, so we compute this value

over all x € § and pick the minimum one.

Dijkstra’s Algorithm: Idea

Let 5; be the ith nearest vertex to 5. (Assume there are no ties and all the weights are positive.)

Dijkstra’s algorithm first computes distance of s, then s,'s, then s3's, then s,'s, and so on.

Suppose we have calculated the distances of § = {57, 55, ..., 5, |-

How can we compute distance of s,

? Shortest path to s, from s.

/

X Skl

C‘ear‘y, d[Sk-I-l] — d[X] + W(X, Sk-l—l)'

/

We don’t know s,_ , so we compute this value over all

\ We don't know x, so we compute this value

over all x € § and pick the minimum one.

v € V\S and the one with minimum value will be s, _ ;.

Dijkstra’s Algorithm: Sketch

Dijkstra’s Algorithm: Sketch

Maintain a set of explored vertices S for which algorithm has found d[u] = o(s, u):

Dijkstra’s Algorithm: Sketch

Maintain a set of explored vertices S for which algorithm has found d[u] = o(s, u):

Step 1: Initialise S = {s}, d[s] = 0.

Dijkstra’s Algorithm: Sketch

Maintain a set of explored vertices S for which algorithm has found d[u] = o(s, u):
Step 1: Initialise S = {s}, d[s] = 0.

Step 2: Choose an unexplored vertex v from V(G)\S which minimizes:

Dijkstra’s Algorithm: Sketch

Maintain a set of explored vertices S for which algorithm has found d[u] = o(s, u):
Step 1: Initialise S = {s}, d[s] = 0.
Step 2: Choose an unexplored vertex v from V(G)\S which minimizes:

zlvl= mm dlu] + w(u,v)
(u,v)eE, ues

Dijkstra’s Algorithm: Sketch

Maintain a set of explored vertices S for which algorithm has found d[u] = o(s, u):
Step 1: Initialise S = {s}, d[s] = 0.
Step 2: Choose an unexplored vertex v from V(G)\S which minimizes:

zlvl= mm dlu] + w(u,v)
(u,v)eE, ues

Add v to S and set d|v]| = I1]v].

Dijkstra’s Algorithm: Sketch

Maintain a set of explored vertices S for which algorithm has found d[u] = o(s, u):
Step 1: Initialise S = {s}, d[s] = 0.
Step 2: Choose an unexplored vertex v from V(G)\S which minimizes:

zlvl= mm dlu] + w(u,v)
(u,v)eE, ues

Add v to S and set d|v]| = I1]v].

Step 3: Go to Step 2 it it can be performed.

