Lecture 14

Dijkstra’s Algorithm

Source: CLRS and Slides of Prof. Surender Baswana
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Weighted Graphs

Defn: \Weight of a path is the sum of the weights of the edges in that path. In a weighted graph,

a shortest-path between two vertices is the path with the least weight.

Example: In the below graph shortest path from s to w is of weight 6.
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Single-Source Shortest Path Problem

Let 0(s, v) denote the weight of a shortest path from s to v.

If v is not reachable (or connected) from s, then (s, v) = .

SSSP:
Input: A weighted graph G = (V, E) with weight function w : £ — R and a vertex s.

Output: Compute distance from s to every other vertex. That is, an array d[1 : | V],

such that d|i] = o(s, 7).

® Dijkstra’s algorithm solves SSSP in graphs with non-negative weights.

® Bellman-Ford’s algorithm solves SSSP in graphs with real weights.
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Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v.

Suppose 3 a shorter path from u; to i,

------

Then using shorter path from u; to i,

we can get a shorter path than P, Is the proof correct? No.
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Let 5; be the ith nearest vertex to 5. (Assume there are no ties and all the weights are positive.)
Dijkstra’s algorithm first computes distance of s, then s,'s, then s3's, then s,'s, and so on.

Suppose we have calculated the distances of § = {57, 55, ..., 5, |-

How can we compute distance of s, ;7 Shortest path to s, from s.
o ——0 -------- o—o—0—0
S X Skl

/

What can we say about x?

x should be s. for some i < £.
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Let 5; be the ith nearest vertex to 5. (Assume there are no ties and all the weights are positive.)

Dijkstra’s algorithm first computes distance of s, then s,'s, then s3's, then s,'s, and so on.

Suppose we have calculated the distances of § = {57, 55, ..., 5, |-

How can we compute distance of s,

? Shortest path to s, from s.

/

X Skl

C‘ear‘y, d[Sk-I-l] — d[X] + W(X, Sk-l—l)'

/

We don’t know s,_ , so we compute this value over all

\ We don't know x, so we compute this value

over all x € § and pick the minimum one.

v € V\S and the one with minimum value will be s, _ ;.
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Maintain a set of explored vertices S for which algorithm has found d[u] = o(s, u):
Step 1: Initialise S = {s}, d[s] = 0.
Step 2: Choose an unexplored vertex v from V(G)\S which minimizes:

zlvl= mm dlu] + w(u,v)
(u,v)eE, ues

Add v to S and set d|v]| = I1]v].

Step 3: Go to Step 2 it it can be performed.



