
Lecture 14

Dijkstra’s Algorithm

Source: CLRS and Slides of Prof. Surender Baswana
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Defn: Weight of a path is the sum of the weights of the edges in that path.

Example:

In a weighted graph, 

a shortest-path between two vertices is the path with the least weight. 
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Defn: Weight of a path is the sum of the weights of the edges in that path.

Example:

In a weighted graph, 

a shortest-path between two vertices is the path with the least weight. 
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Defn: Weight of a path is the sum of the weights of the edges in that path.

Example:

In a weighted graph, 

a shortest-path between two vertices is the path with the least weight. 

In the below graph shortest path from  to  is of weight .s w 6
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Single-Source Shortest Path Problem

SSSP:

     Input: A weighted graph  with weight function  and a vertex .G = (V, E) w : E → ℝ s
     Output: Compute distance from  to every other vertex. That is, an array , s d[1 : |V | ]
                   such that .d[i] = δ(s, i)

Let  denote the weight of a shortest path from  to .δ(s, v) s v

If  is not reachable (or connected) from , then .v s δ(s, v) = ∞

• Dijkstra’s algorithm solves SSSP in graphs with non-negative weights.

• Bellman-Ford’s algorithm solves SSSP in graphs with real weights.
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Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v

2 8 1 2 5 7 3

Shorter path from  to  may pass 

through  etc.

u3 u6
u1, u2,< 14
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Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let  be a shortest path from  to .P s v

s u1 u2 u3 u4 u5 u6 v
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Lemma is true only when 
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 and the one with minimum value will be .
sk+1

v ∈ V∖S sk+1
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Step 3: Go to Step 2 if it can be performed.


