

Lecture 14

Dijkstra's Algorithm

Weighted Graphs

Weighted Graphs

Defn: A **weighted graph** $G = (V, E)$ is graph with a weight function $w : E \rightarrow \mathbb{R}$ mapping edges

Weighted Graphs

Defn: A **weighted graph** $G = (V, E)$ is graph with a weight function $w : E \rightarrow \mathbb{R}$ mapping edges to **real-valued weights**.

Weighted Graphs

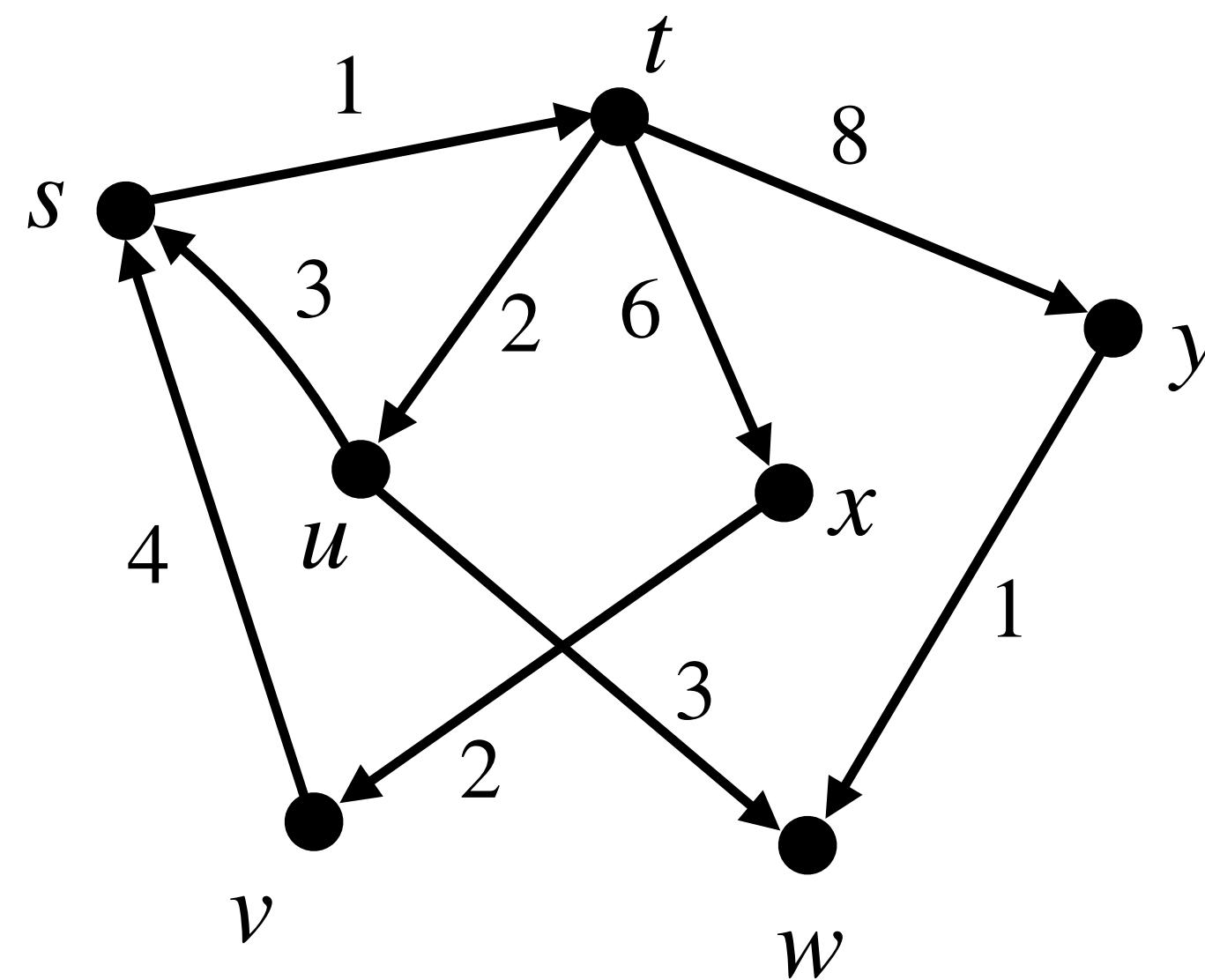
Defn: A **weighted graph** $G = (V, E)$ is graph with a weight function $w : E \rightarrow \mathbb{R}$ mapping edges to **real-valued weights**.

Example:

Weighted Graphs

Defn: A **weighted graph** $G = (V, E)$ is graph with a weight function $w : E \rightarrow \mathbb{R}$ mapping edges to **real-valued weights**.

Example:



Weighted Graphs

Weighted Graphs

Defn: Weight of a path is the **sum** of the weights of the edges in that path.

Weighted Graphs

Defn: Weight of a path is the **sum** of the weights of the edges in that path. In a **weighted graph**,

Weighted Graphs

Defn: Weight of a path is the **sum** of the weights of the edges in that path. In a **weighted graph**, a **shortest-path** between two vertices is the path with the **least weight**.

Weighted Graphs

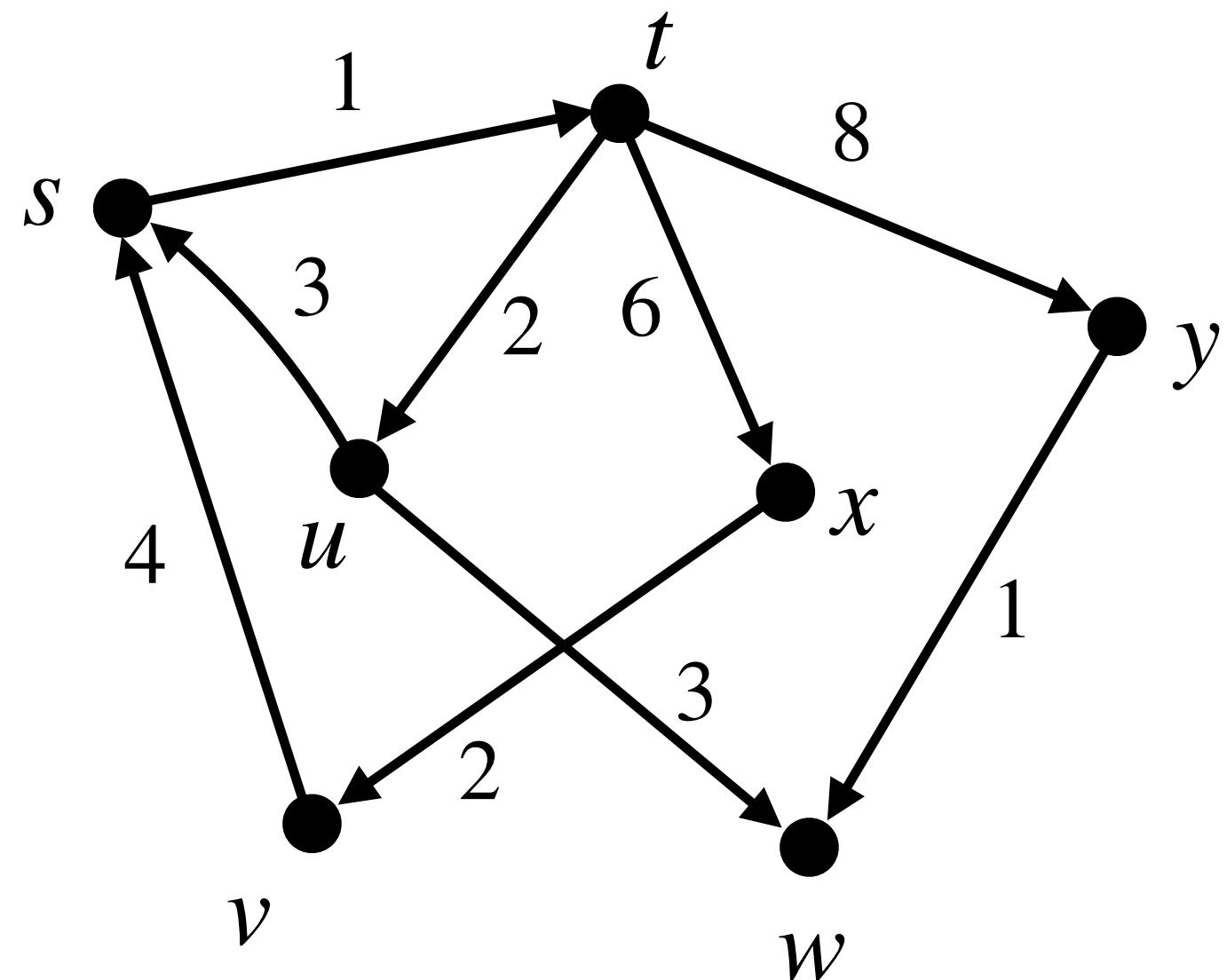
Defn: Weight of a path is the **sum** of the weights of the edges in that path. In a **weighted graph**, a **shortest-path** between two vertices is the path with the **least weight**.

Example:

Weighted Graphs

Defn: Weight of a path is the **sum** of the weights of the edges in that path. In a **weighted graph**, a **shortest-path** between two vertices is the path with the **least weight**.

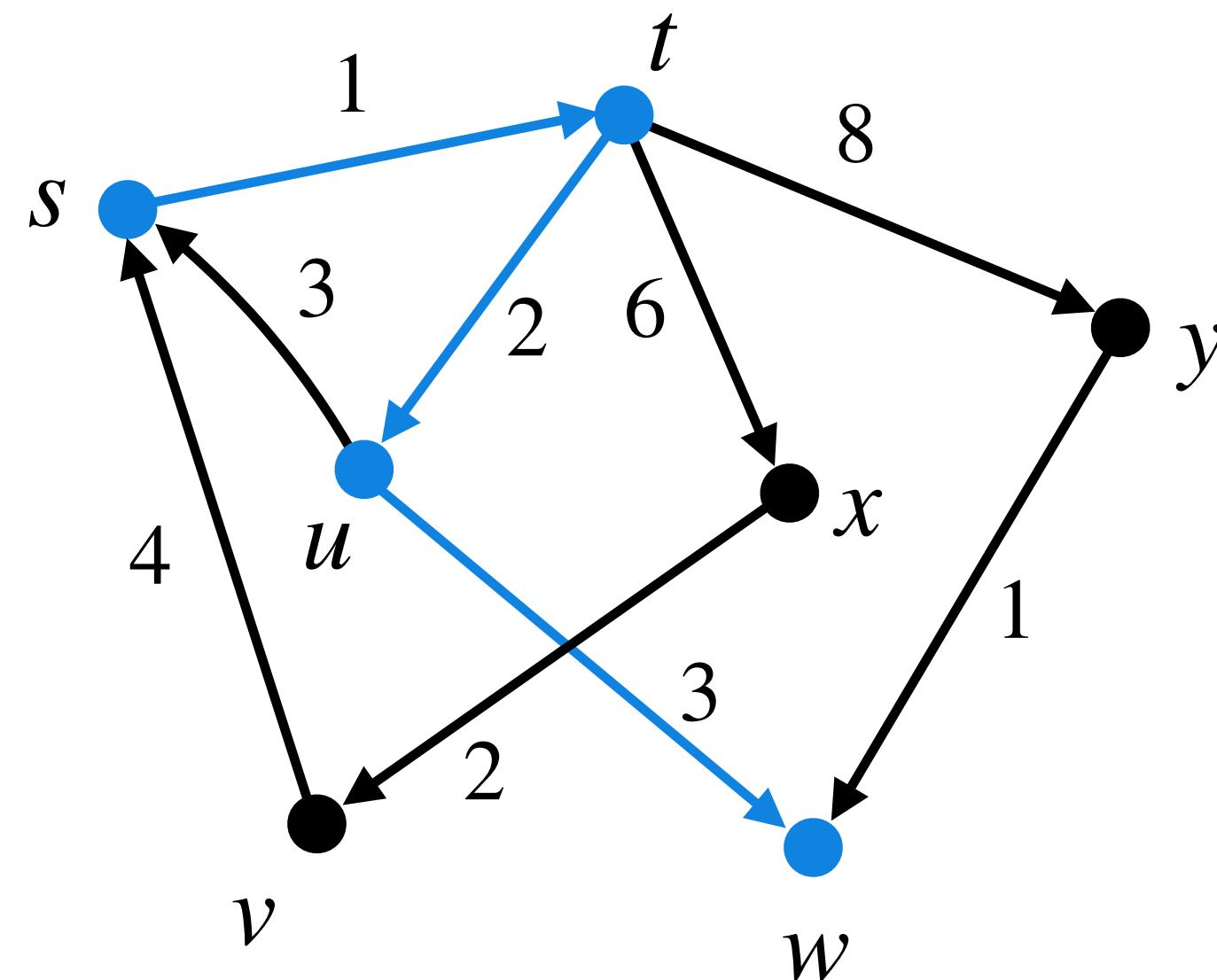
Example:



Weighted Graphs

Defn: Weight of a path is the **sum** of the weights of the edges in that path. In a **weighted graph**, a **shortest-path** between two vertices is the path with the **least weight**.

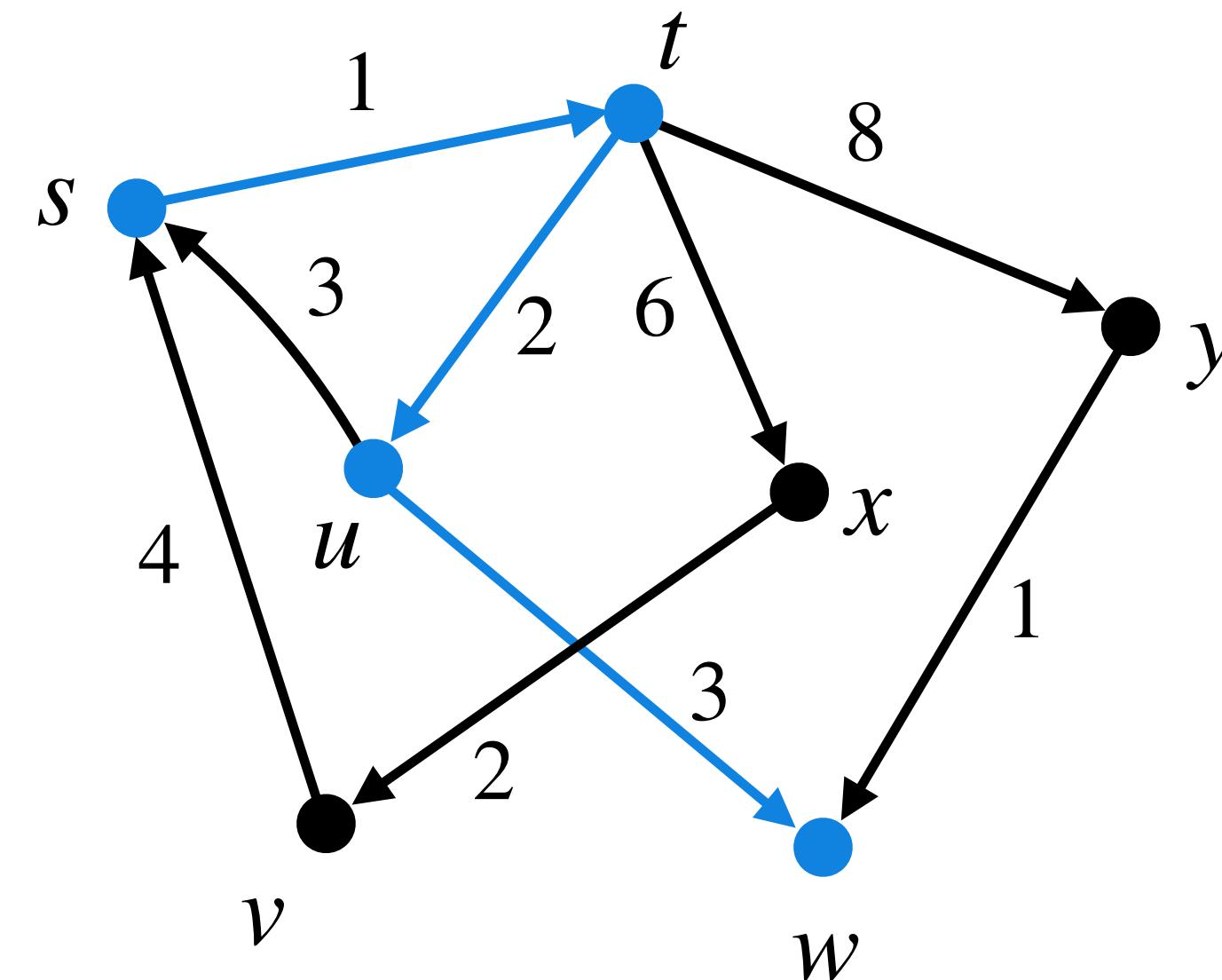
Example:



Weighted Graphs

Defn: Weight of a path is the **sum** of the weights of the edges in that path. In a **weighted graph**, a **shortest-path** between two vertices is the path with the **least weight**.

Example: In the below graph shortest path from **s** to **w** is of weight 6.



Single-Source Shortest Path Problem

Single-Source Shortest Path Problem

Let $\delta(s, v)$ denote the weight of a **shortest path** from s to v .

Single-Source Shortest Path Problem

Let $\delta(s, v)$ denote the weight of a **shortest path** from s to v .

If v is not reachable (or connected) from s , then $\delta(s, v) = \infty$.

Single-Source Shortest Path Problem

Let $\delta(s, v)$ denote the weight of a **shortest path** from s to v .

If v is not reachable (or connected) from s , then $\delta(s, v) = \infty$.

SSSP:

Single-Source Shortest Path Problem

Let $\delta(s, v)$ denote the weight of a **shortest path** from s to v .

If v is not reachable (or connected) from s , then $\delta(s, v) = \infty$.

SSSP:

Input: A weighted graph $G = (V, E)$ with weight function $w : E \rightarrow \mathbb{R}$ and a vertex s .

Single-Source Shortest Path Problem

Let $\delta(s, v)$ denote the weight of a **shortest path** from s to v .

If v is not reachable (or connected) from s , then $\delta(s, v) = \infty$.

SSSP:

Input: A weighted graph $G = (V, E)$ with weight function $w : E \rightarrow \mathbb{R}$ and a vertex s .

Output: Compute distance from s to every other vertex. That is, an array $d[1 : |V|]$,

Single-Source Shortest Path Problem

Let $\delta(s, v)$ denote the weight of a **shortest path** from s to v .

If v is not reachable (or connected) from s , then $\delta(s, v) = \infty$.

SSSP:

Input: A weighted graph $G = (V, E)$ with weight function $w : E \rightarrow \mathbb{R}$ and a vertex s .

Output: Compute distance from s to every other vertex. That is, an array $d[1 : |V|]$, such that $d[i] = \delta(s, i)$.

Single-Source Shortest Path Problem

Let $\delta(s, v)$ denote the weight of a **shortest path** from s to v .

If v is not reachable (or connected) from s , then $\delta(s, v) = \infty$.

SSSP:

Input: A weighted graph $G = (V, E)$ with weight function $w : E \rightarrow \mathbb{R}$ and a vertex s .

Output: Compute distance from s to every other vertex. That is, an array $d[1 : |V|]$, such that $d[i] = \delta(s, i)$.

- **Dijkstra's** algorithm solves **SSSP** in graphs with **non-negative weights**.

Single-Source Shortest Path Problem

Let $\delta(s, v)$ denote the weight of a **shortest path** from s to v .

If v is not reachable (or connected) from s , then $\delta(s, v) = \infty$.

SSSP:

Input: A weighted graph $G = (V, E)$ with weight function $w : E \rightarrow \mathbb{R}$ and a vertex s .

Output: Compute distance from s to every other vertex. That is, an array $d[1 : |V|]$, such that $d[i] = \delta(s, i)$.

- **Dijkstra's** algorithm solves **SSSP** in graphs with **non-negative weights**.
- **Bellman-Ford's** algorithm solves **SSSP** in graphs with **real weights**.

Optimal Subpath Property

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch:

Optimal Subpath Property

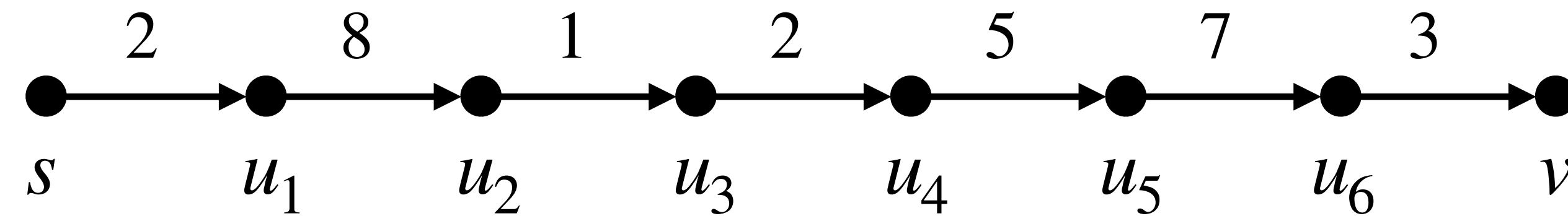
Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v .

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

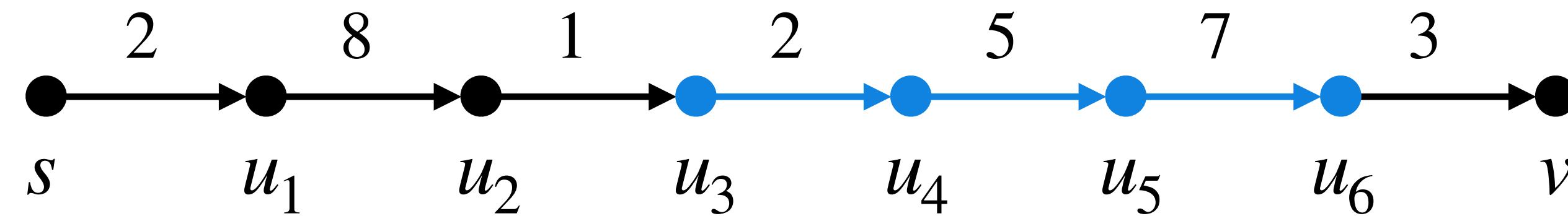
Proof Sketch: Let P be a shortest path from s to v .



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

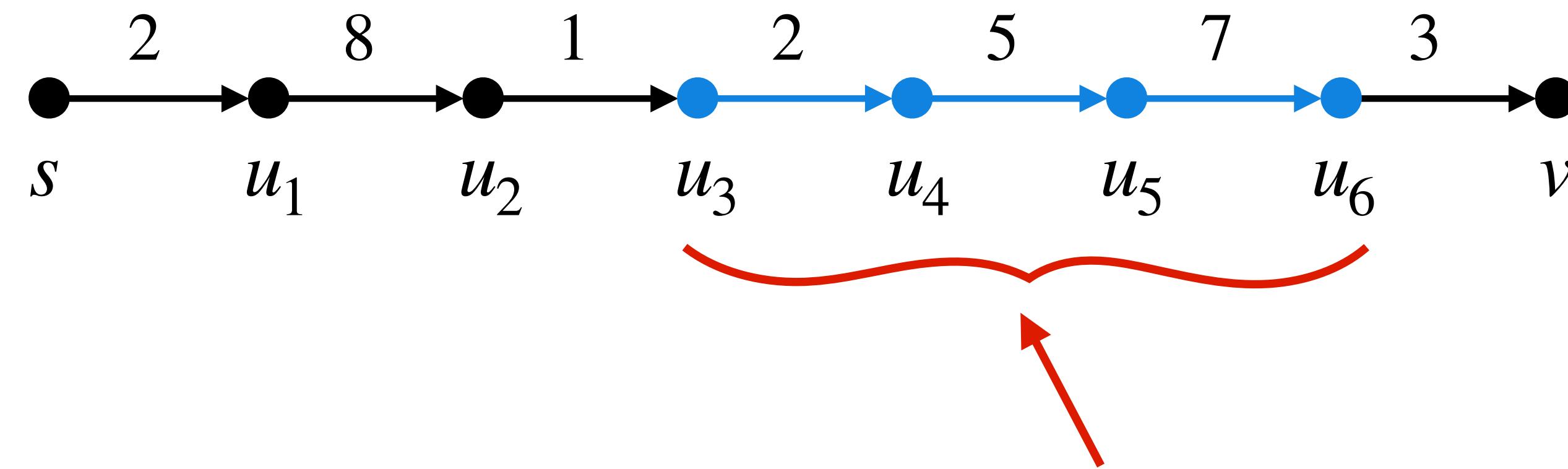
Proof Sketch: Let P be a shortest path from s to v .



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v .

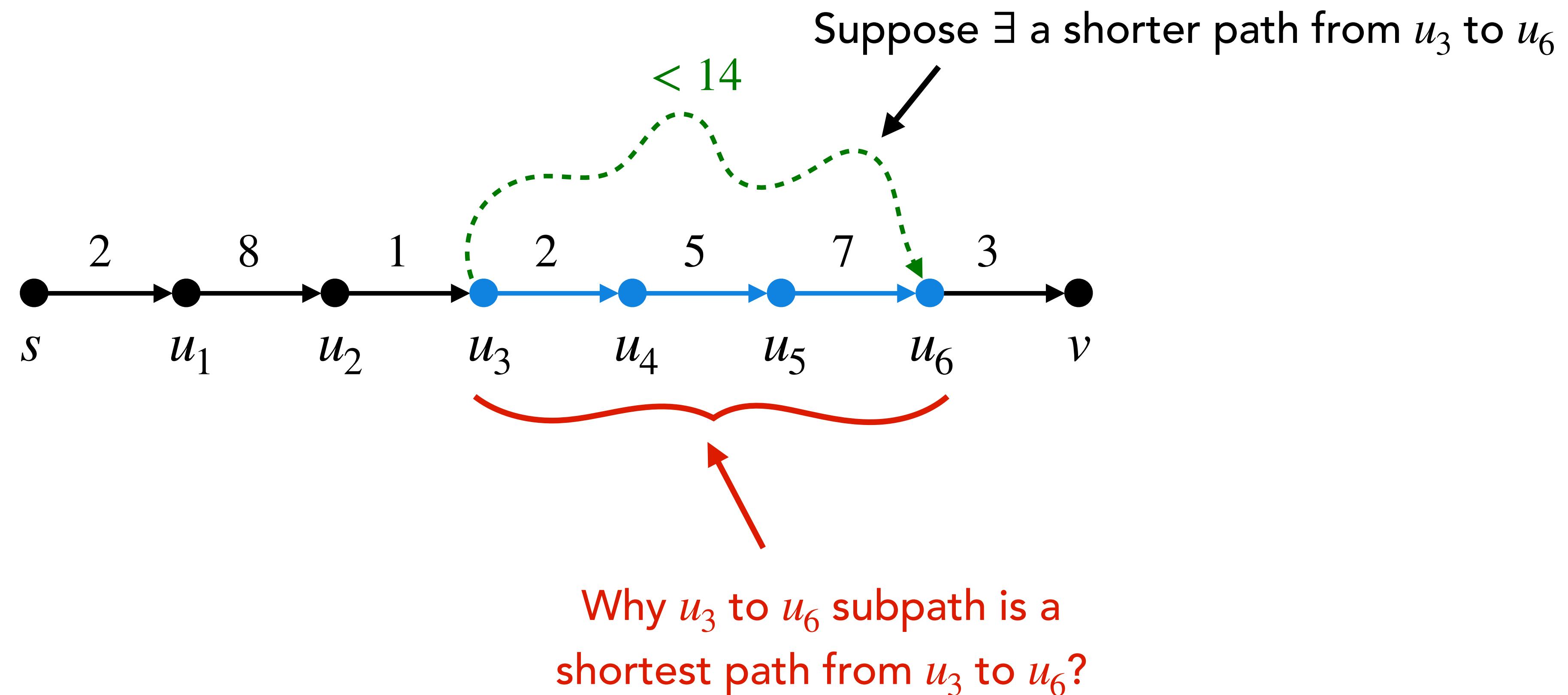


Why u_3 to u_6 subpath is a shortest path from u_3 to u_6 ?

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

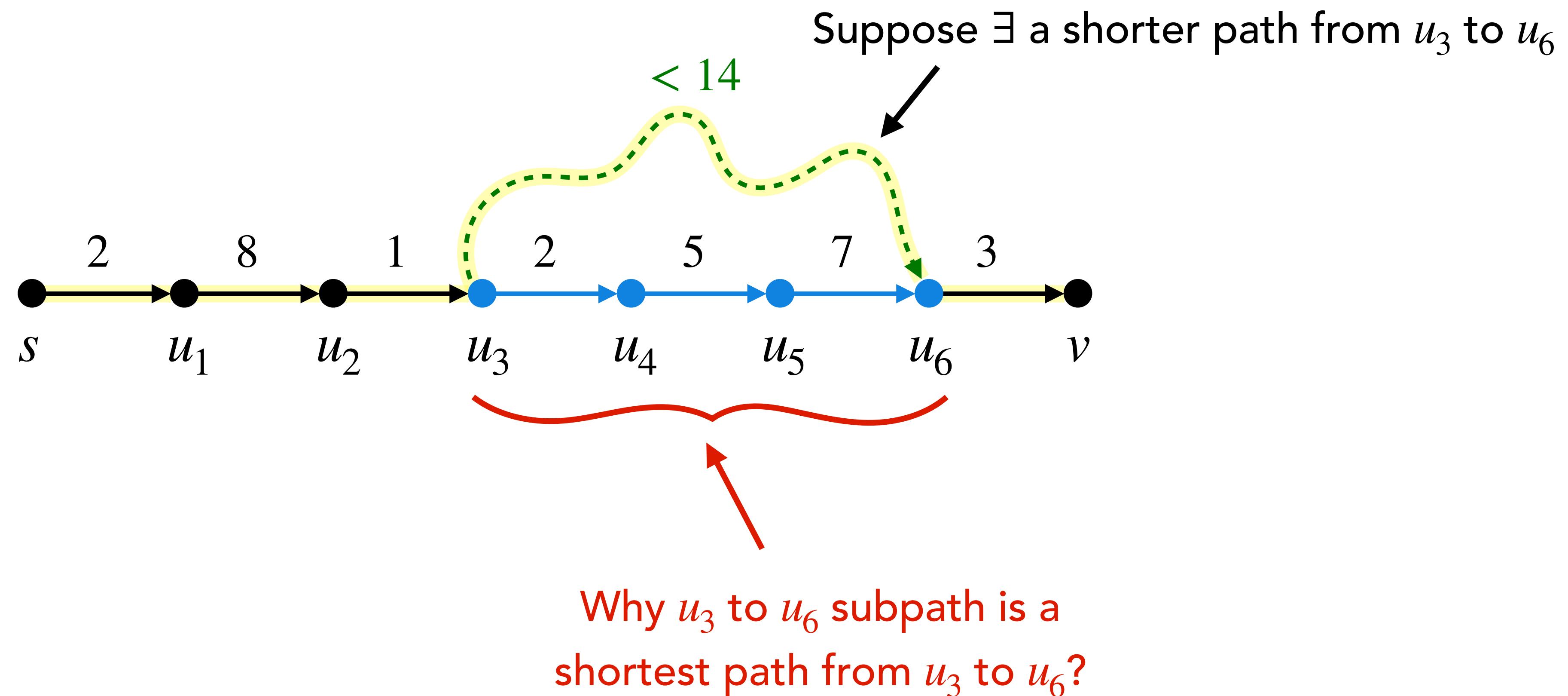
Proof Sketch: Let P be a shortest path from s to v .



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

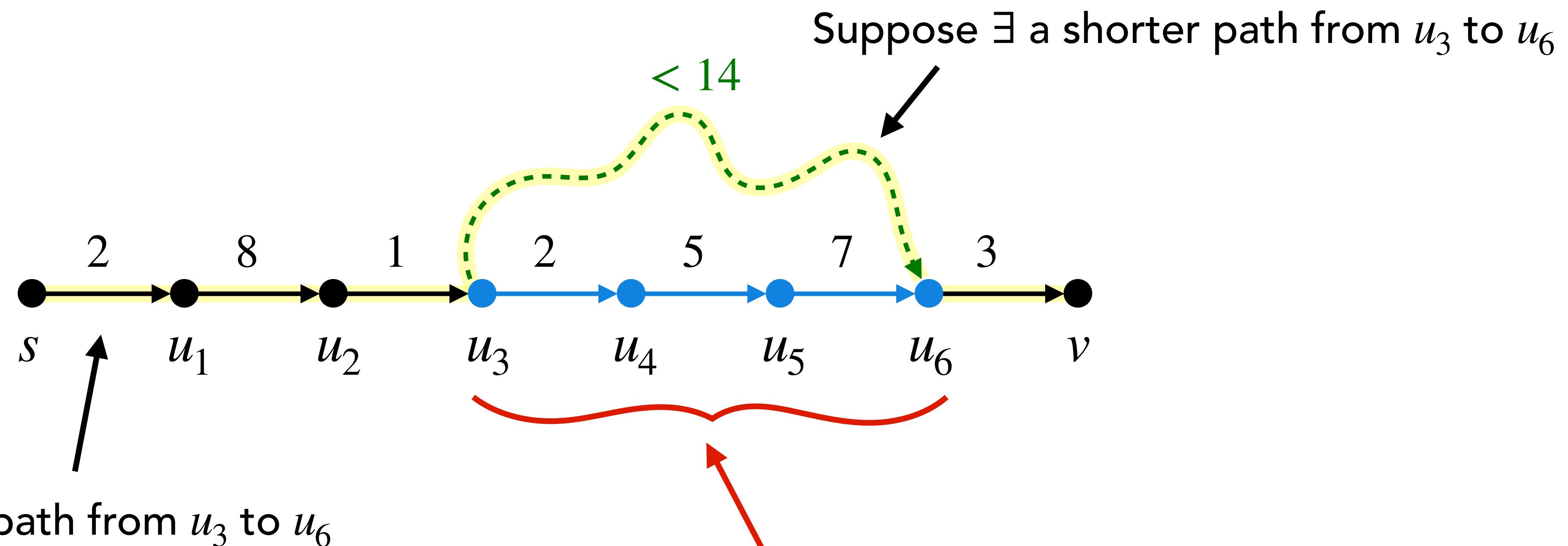
Proof Sketch: Let P be a shortest path from s to v .



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v .

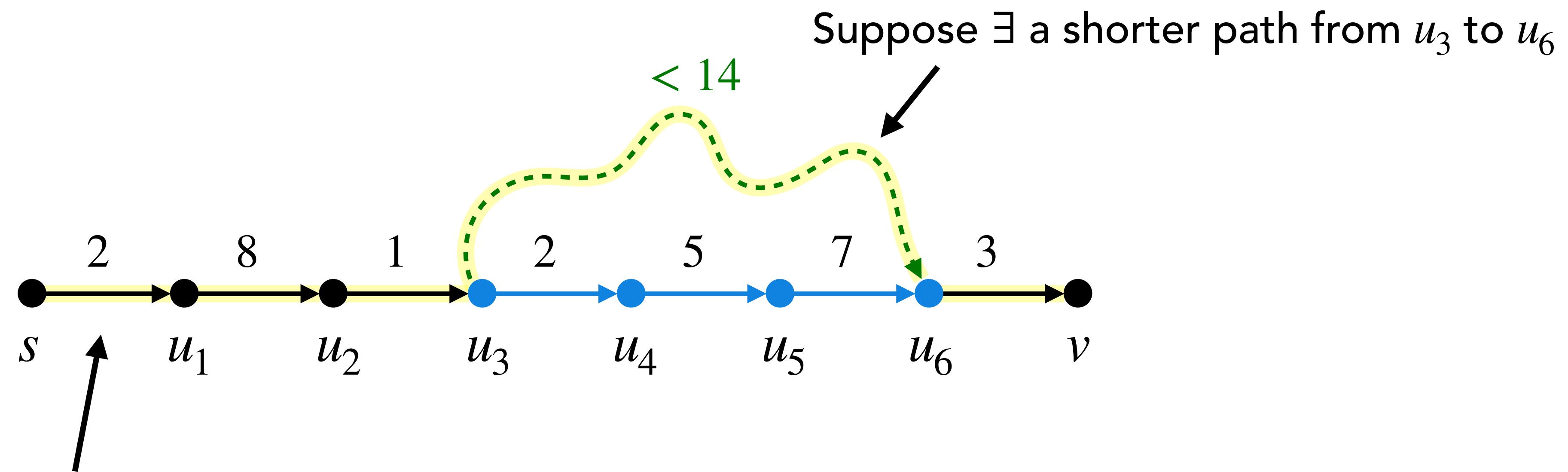


Why u_3 to u_6 subpath is a shortest path from u_3 to u_6 ?

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v .



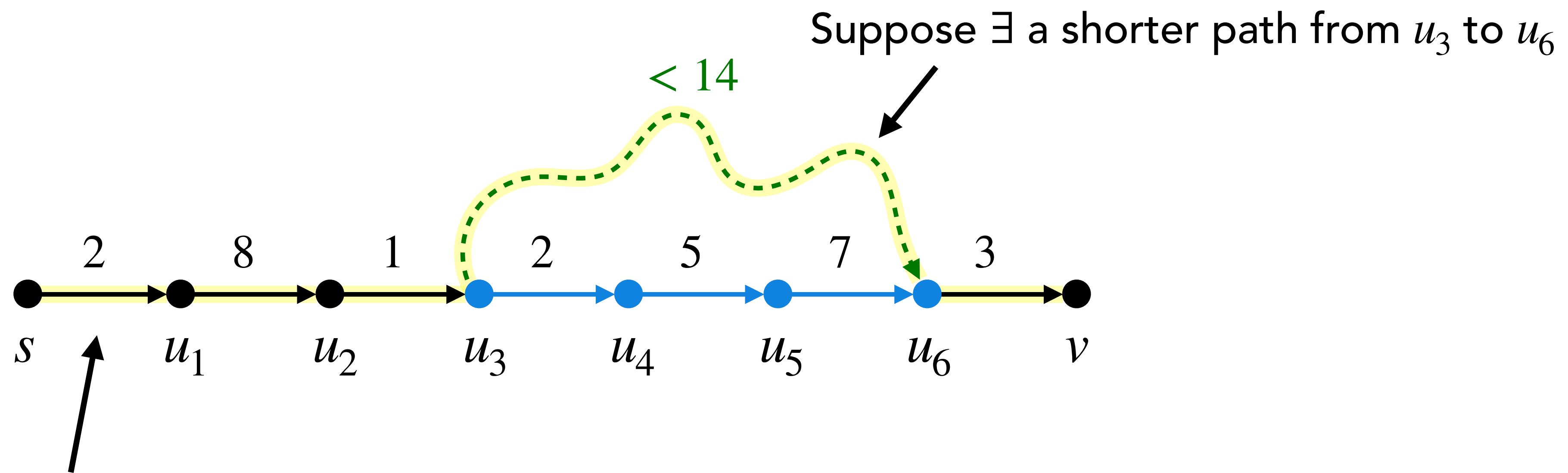
Then using shorter path from u_3 to u_6
we can get a shorter path than P ,
which is a contradiction.

Is the proof correct?

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v .



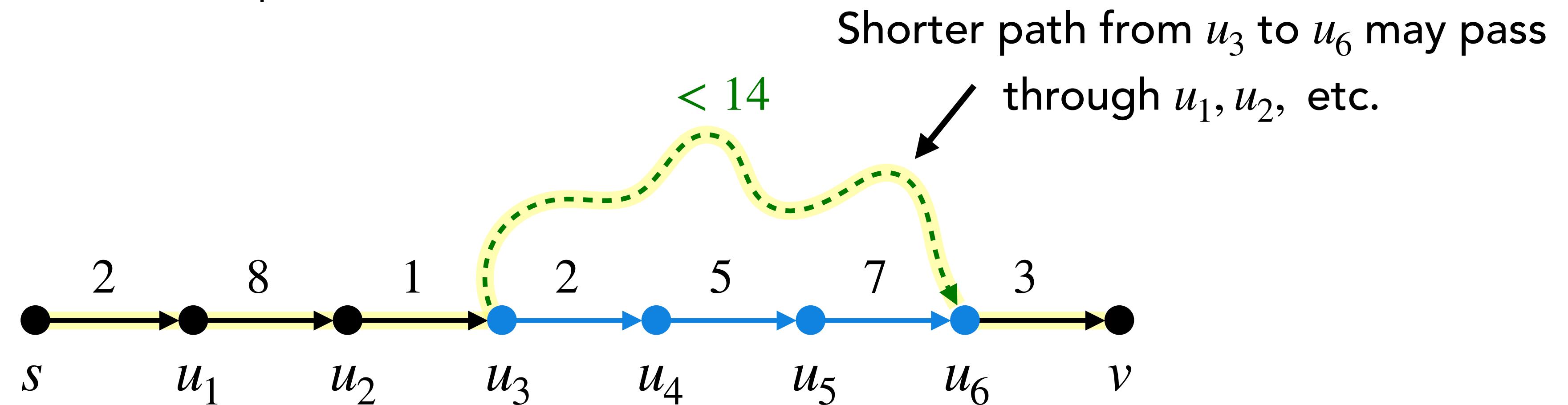
Then using shorter path from u_3 to u_6
we can get a shorter path than P ,
which is a contradiction.

Is the proof correct? No.

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

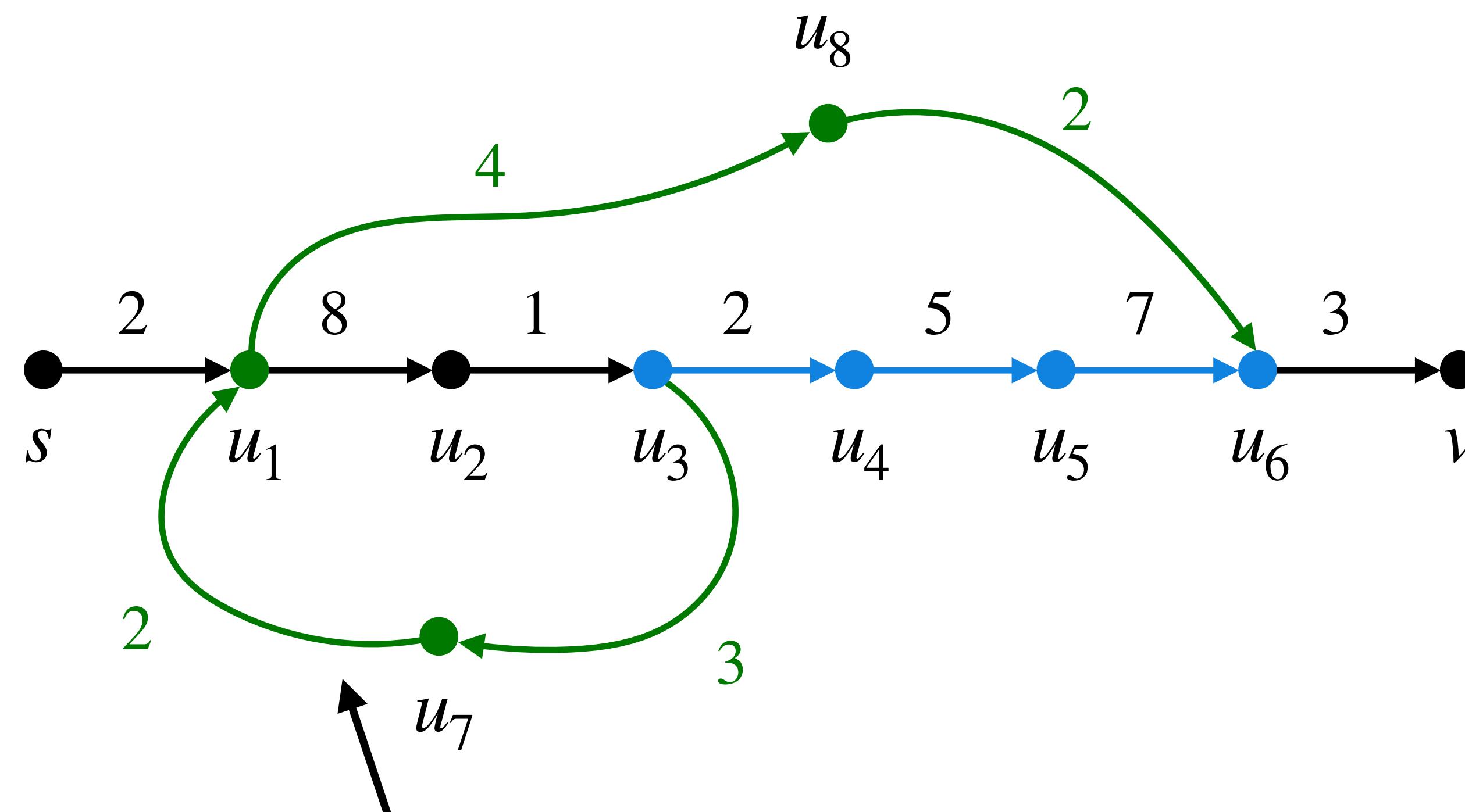
Proof Sketch: Let P be a shortest path from s to v .



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v .

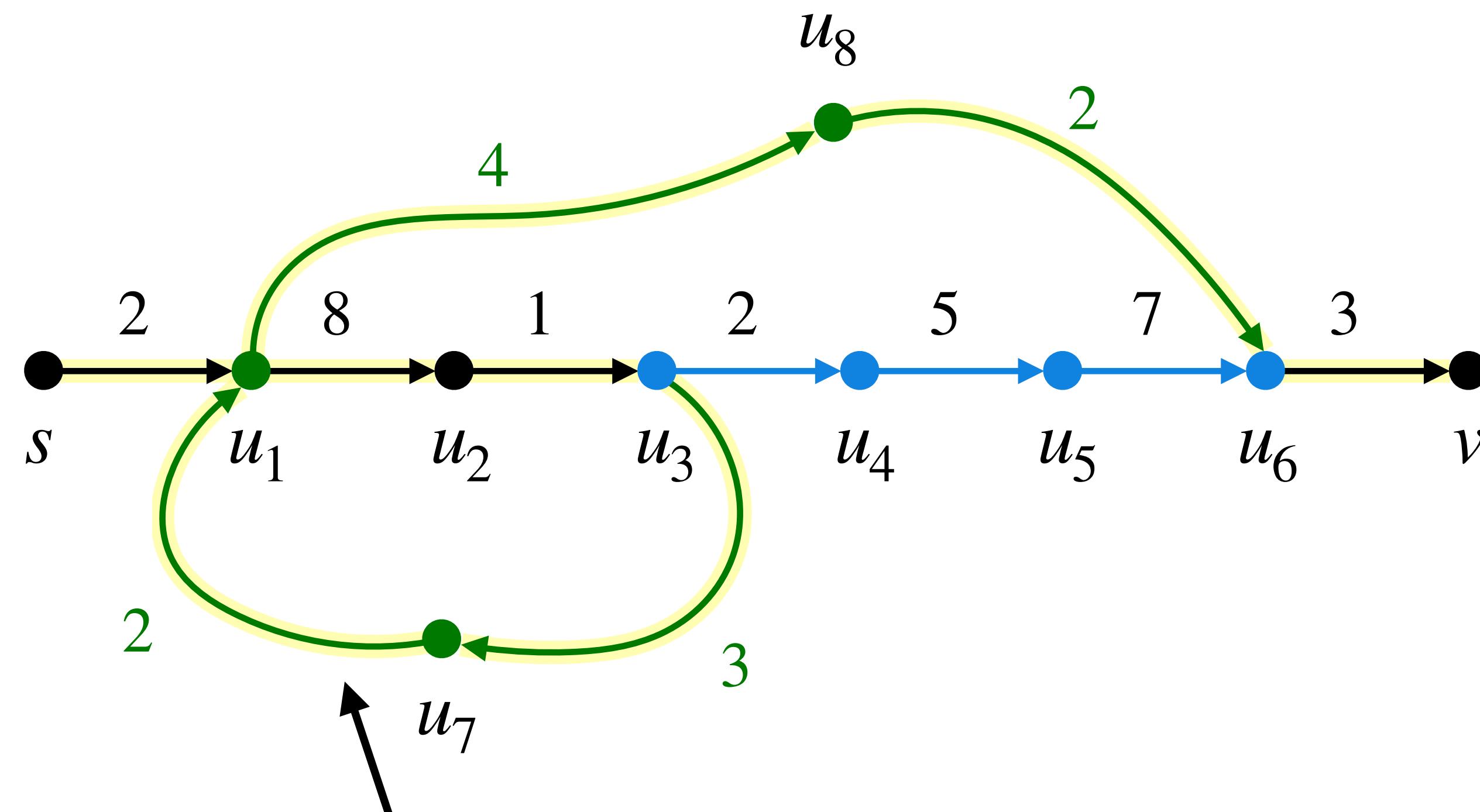


Shorter path from u_3 to u_6 going via u_1 .

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v .

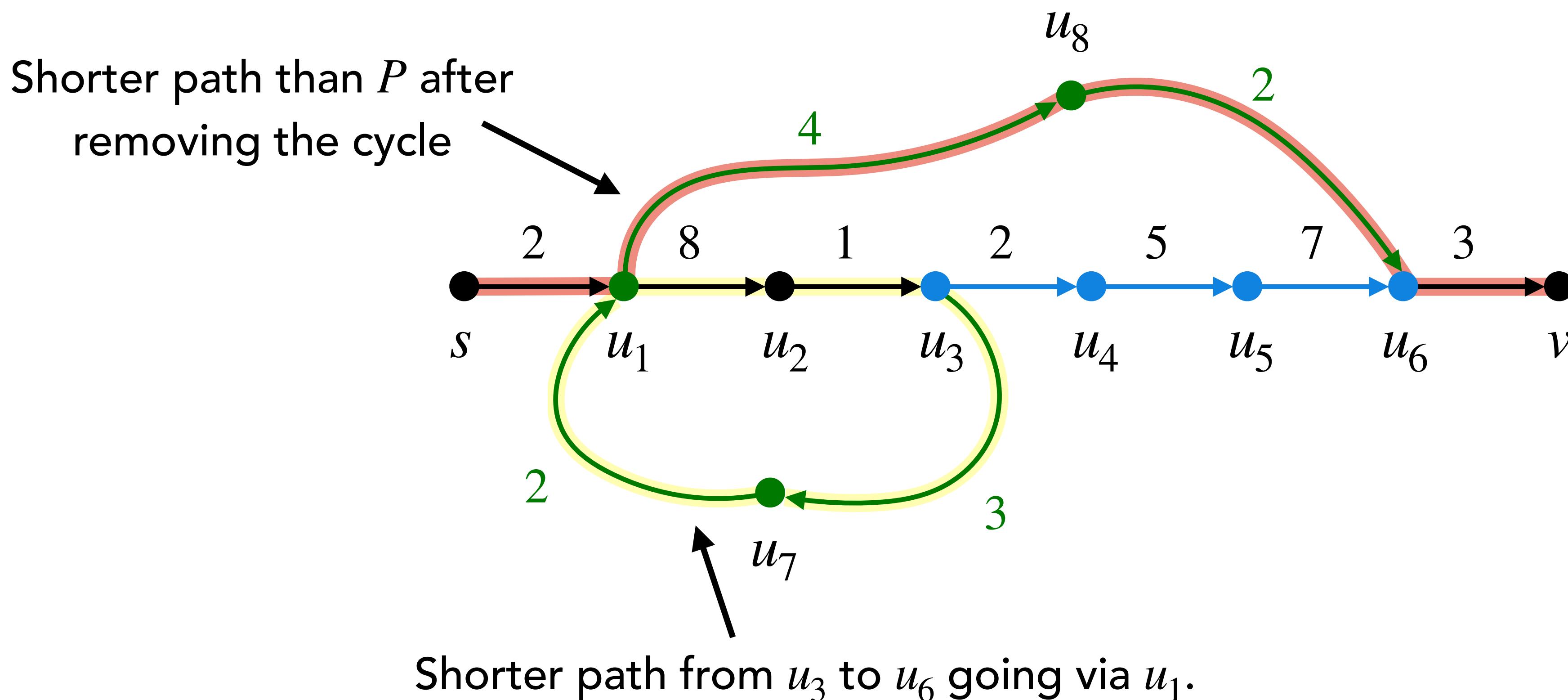


Shorter path from u_3 to u_6 going via u_1 .

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

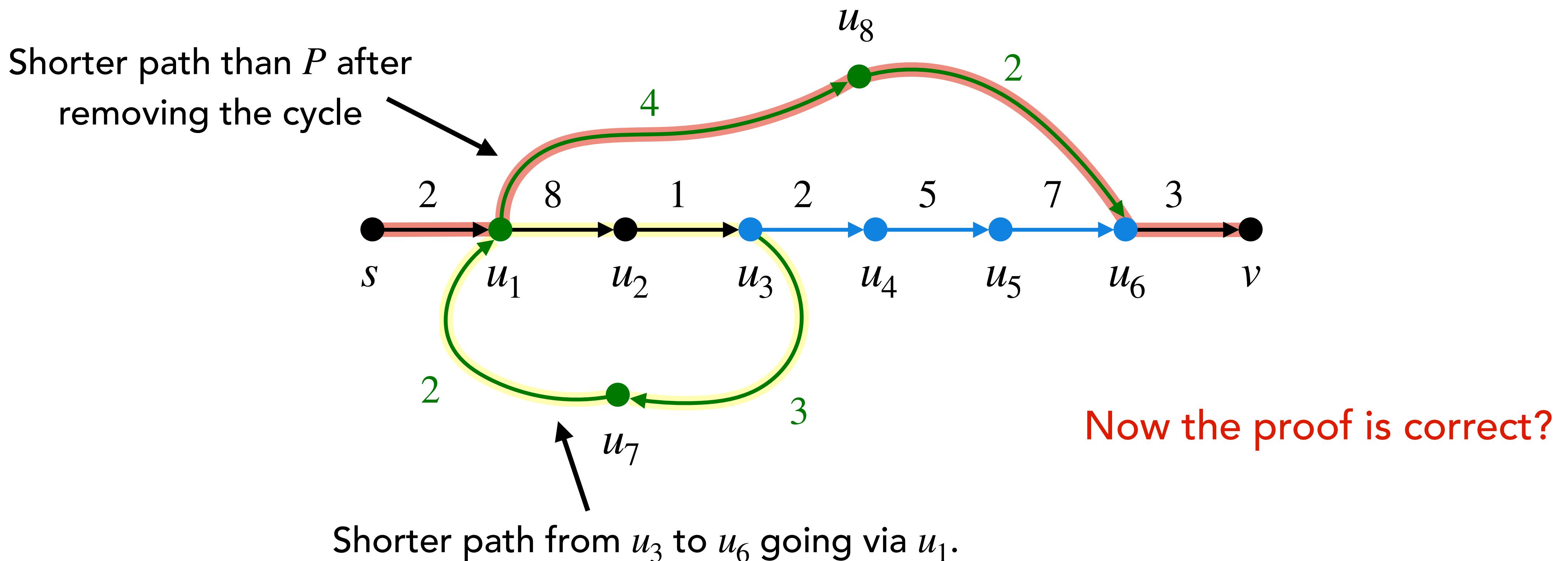
Proof Sketch: Let P be a shortest path from s to v .



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

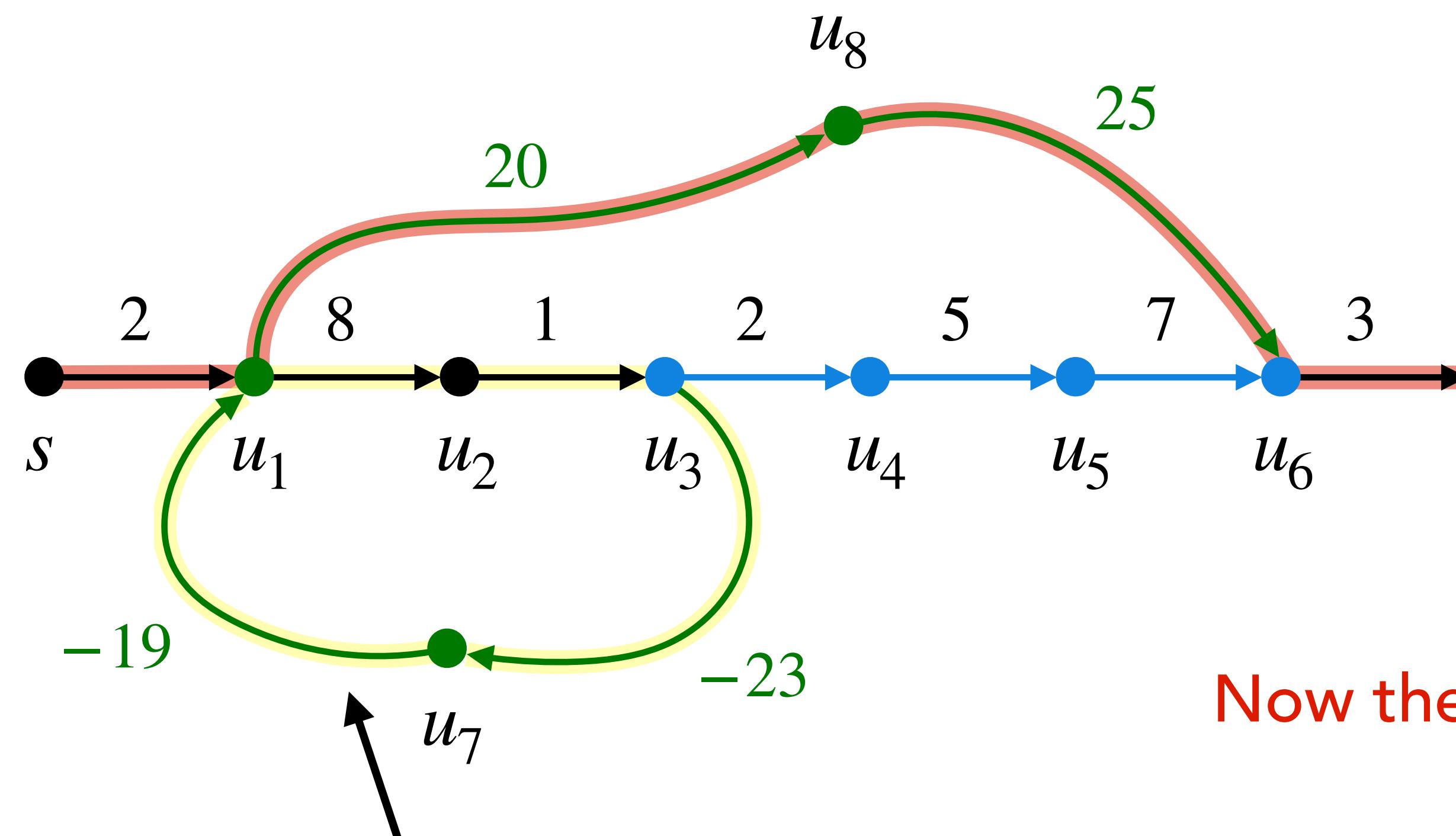
Proof Sketch: Let P be a shortest path from s to v .



Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v .



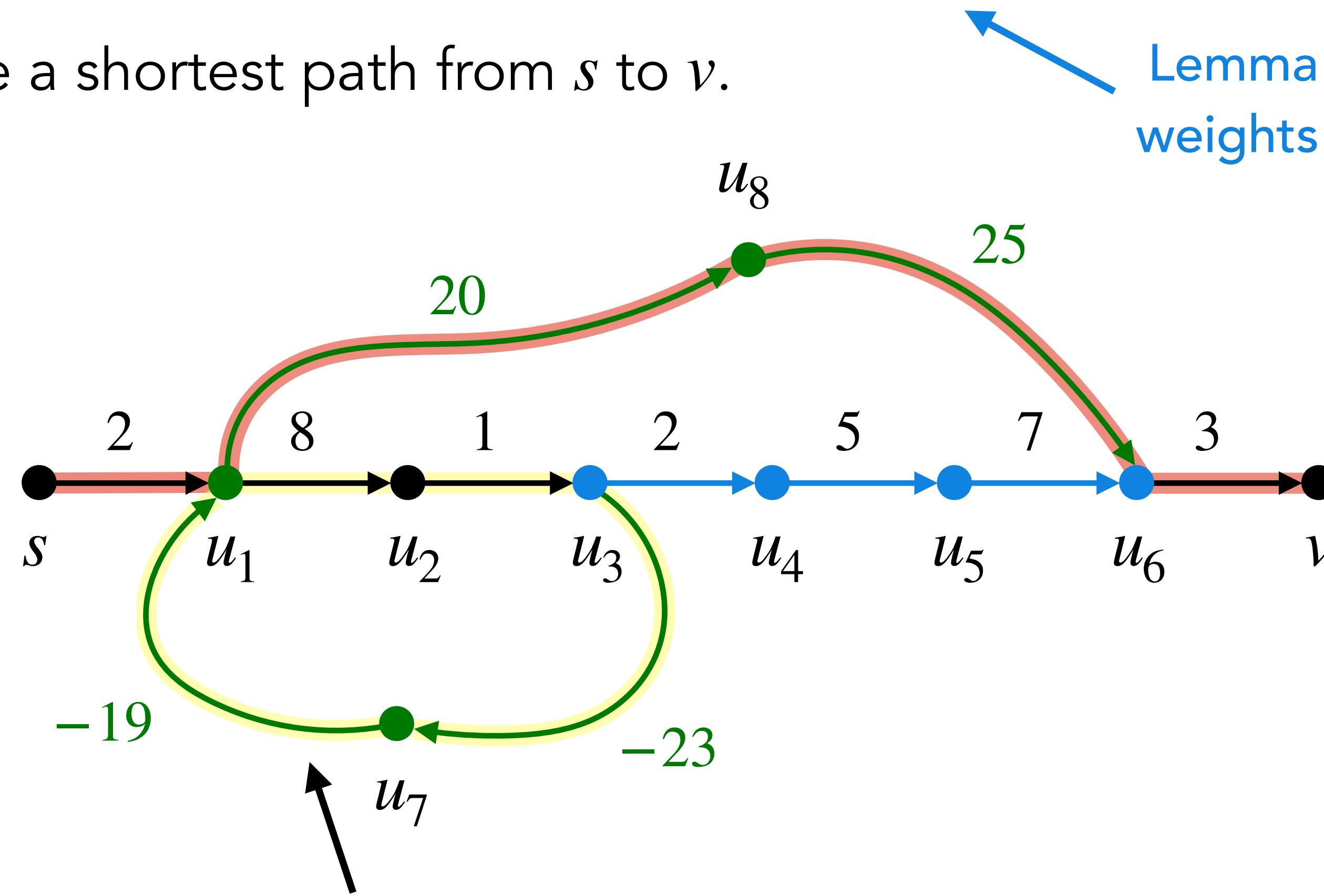
Shorter path from u_3 to u_6 going via u_1 .

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v .

Lemma is true only when weights are non-negative.



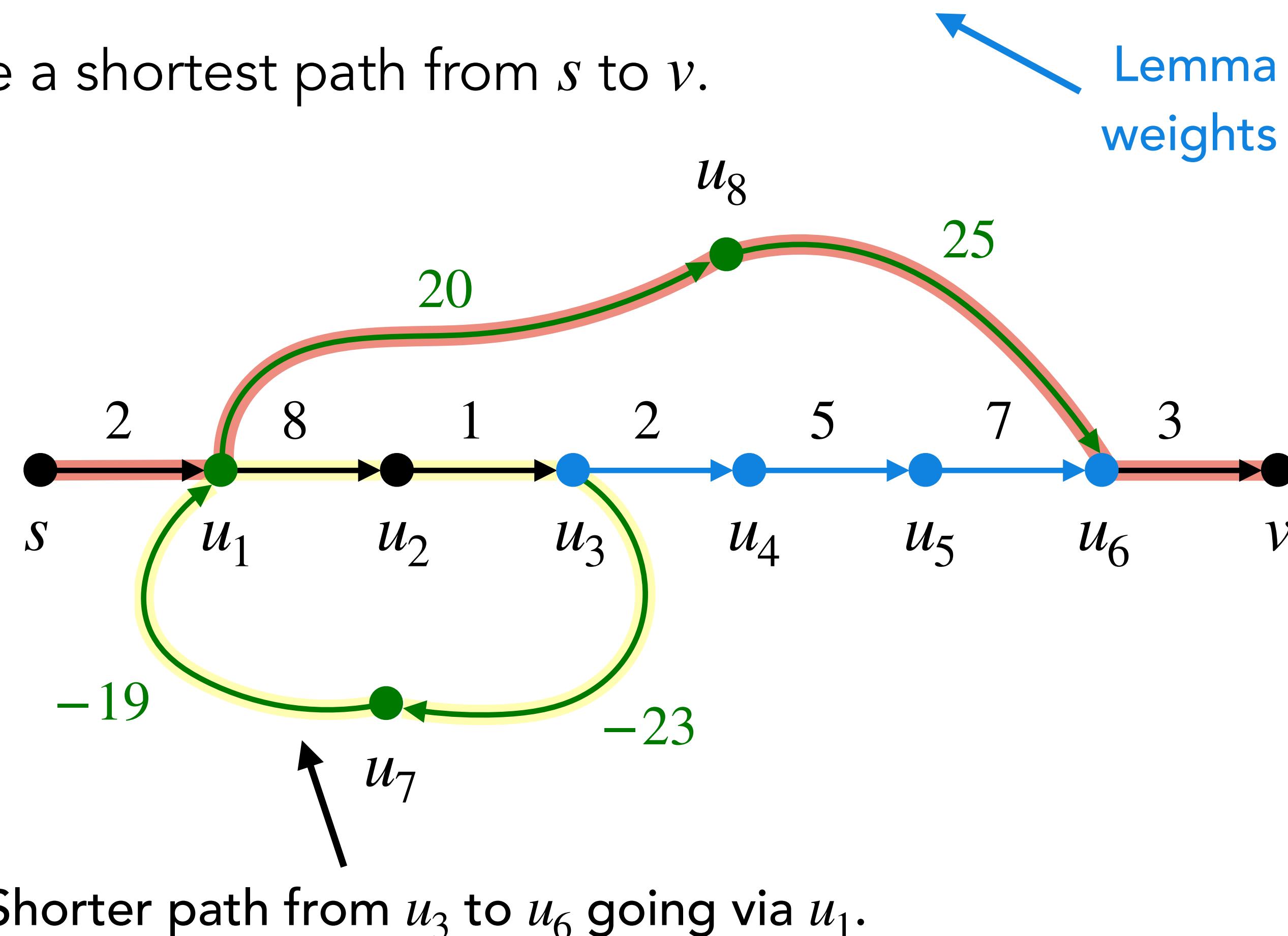
Shorter path from u_3 to u_6 going via u_1 .

Optimal Subpath Property

Lemma: Every subpath of a shortest is also a shortest path.

Proof Sketch: Let P be a shortest path from s to v .

Lemma is true only when weights are non-negative.



Dijkstra's Algorithm: Idea

Dijkstra's Algorithm: Idea

Let s_i be the i th nearest vertex to s .

Dijkstra's Algorithm: Idea

Let s_i be the i th nearest vertex to s . (Assume there are no ties and all the weights are positive.)

Dijkstra's Algorithm: Idea

Let s_i be the *i*th nearest vertex to s . (Assume there are no ties and all the weights are positive.)

Dijkstra's algorithm first computes distance of s_1 , then s_2 's, then s_3 's, then s_4 's, and so on.

Dijkstra's Algorithm: Idea

Let s_i be the *i*th nearest vertex to s . (Assume there are no ties and all the weights are positive.)

Dijkstra's algorithm first computes distance of s_1 , then s_2 's, then s_3 's, then s_4 's, and so on.

Suppose we have calculated the distances of $S = \{s_1, s_2, \dots, s_k\}$.

Dijkstra's Algorithm: Idea

Let s_i be the *i*th nearest vertex to s . (Assume there are no ties and all the weights are positive.)

Dijkstra's algorithm first computes distance of s_1 , then s_2 's, then s_3 's, then s_4 's, and so on.

Suppose we have calculated the distances of $S = \{s_1, s_2, \dots, s_k\}$.

How can we compute distance of s_{k+1} ?

Dijkstra's Algorithm: Idea

Let s_i be the *i*th nearest vertex to s . (Assume there are no ties and all the weights are positive.)

Dijkstra's algorithm first computes distance of s_1 , then s_2 's, then s_3 's, then s_4 's, and so on.

Suppose we have calculated the distances of $S = \{s_1, s_2, \dots, s_k\}$.

How can we compute distance of s_{k+1} ?

Dijkstra's Algorithm: Idea

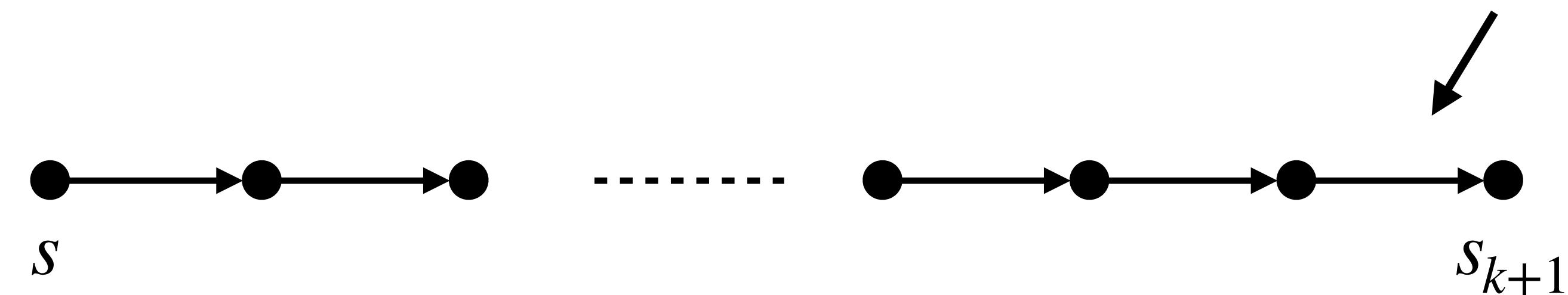
Let s_i be the *i*th nearest vertex to s . (Assume there are no ties and all the weights are positive.)

Dijkstra's algorithm first computes distance of s_1 , then s_2 's, then s_3 's, then s_4 's, and so on.

Suppose we have calculated the distances of $S = \{s_1, s_2, \dots, s_k\}$.

How can we compute distance of s_{k+1} ?

Shortest path to s_{k+1} from s .



Dijkstra's Algorithm: Idea

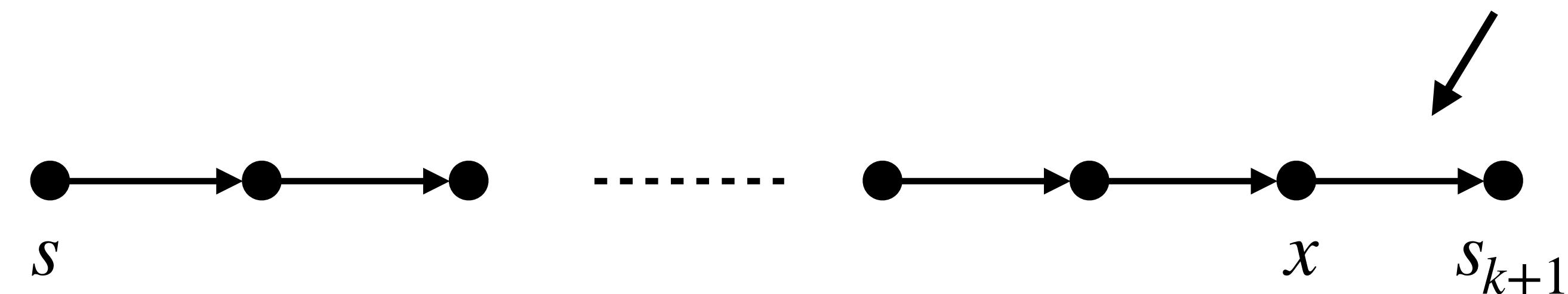
Let s_i be the i th nearest vertex to s . (Assume there are no ties and all the weights are positive.)

Dijkstra's algorithm first computes distance of s_1 , then s_2 's, then s_3 's, then s_4 's, and so on.

Suppose we have calculated the distances of $S = \{s_1, s_2, \dots, s_k\}$.

How can we compute distance of s_{k+1} ?

Shortest path to s_{k+1} from s .



Dijkstra's Algorithm: Idea

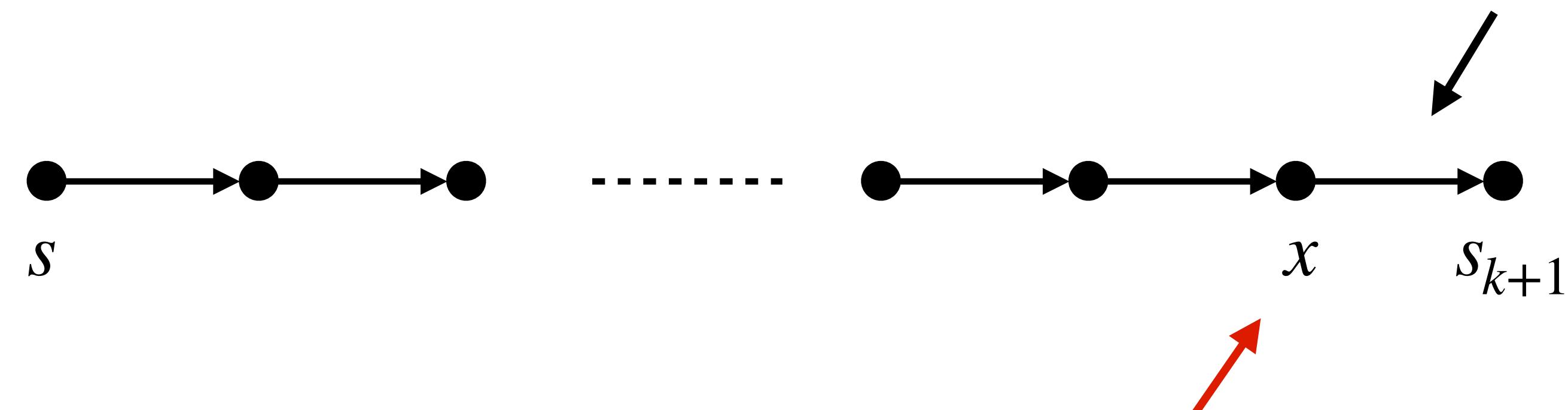
Let s_i be the i th nearest vertex to s . (Assume there are no ties and all the weights are positive.)

Dijkstra's algorithm first computes distance of s_1 , then s_2 's, then s_3 's, then s_4 's, and so on.

Suppose we have calculated the distances of $S = \{s_1, s_2, \dots, s_k\}$.

How can we compute distance of s_{k+1} ?

Shortest path to s_{k+1} from s .



What can we say about x ?

Dijkstra's Algorithm: Idea

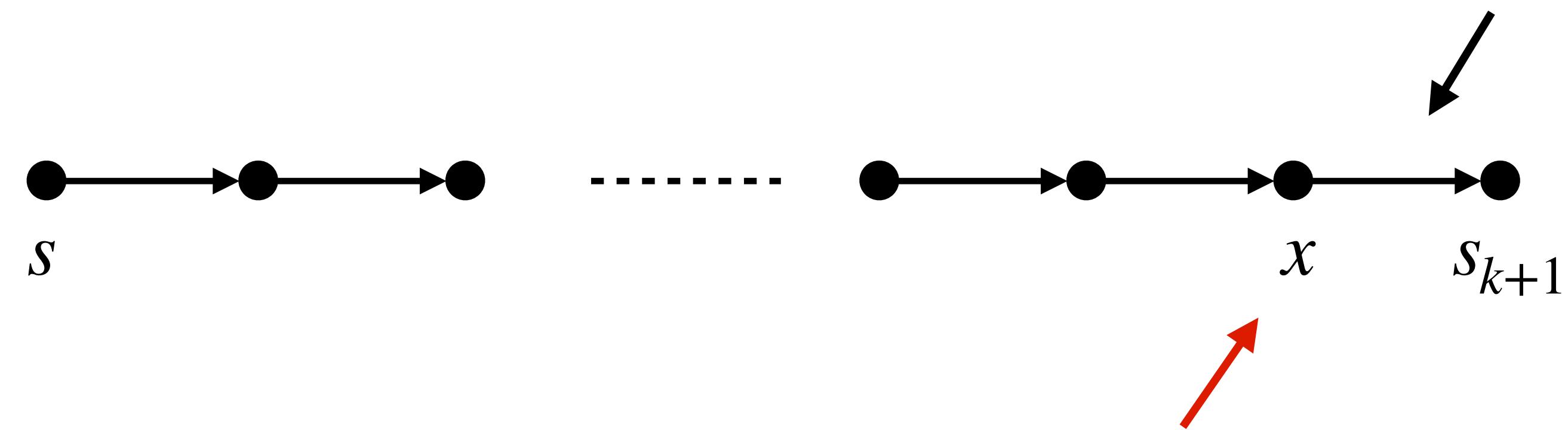
Let s_i be the i th nearest vertex to s . (Assume there are no ties and all the weights are positive.)

Dijkstra's algorithm first computes distance of s_1 , then s_2 's, then s_3 's, then s_4 's, and so on.

Suppose we have calculated the distances of $S = \{s_1, s_2, \dots, s_k\}$.

How can we compute distance of s_{k+1} ?

Shortest path to s_{k+1} from s .



What can we say about x ?

x should be s_i for some $i \leq k$.

Dijkstra's Algorithm: Idea

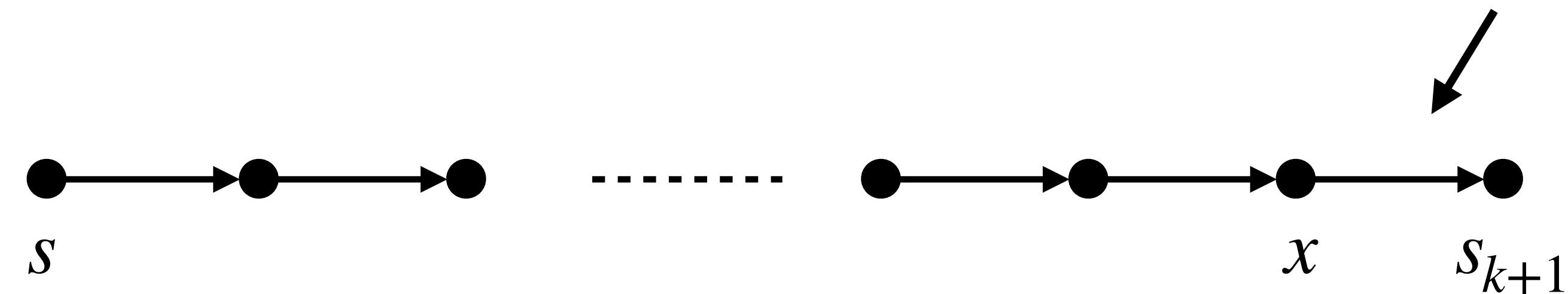
Let s_i be the *i*th nearest vertex to s . (Assume there are no ties and all the weights are positive.)

Dijkstra's algorithm first computes distance of s_1 , then s_2 's, then s_3 's, then s_4 's, and so on.

Suppose we have calculated the distances of $S = \{s_1, s_2, \dots, s_k\}$.

How can we compute distance of s_{k+1} ?

Shortest path to s_{k+1} from s .



Clearly, $d[s_{k+1}] = d[x] + w(x, s_{k+1})$.

Dijkstra's Algorithm: Idea

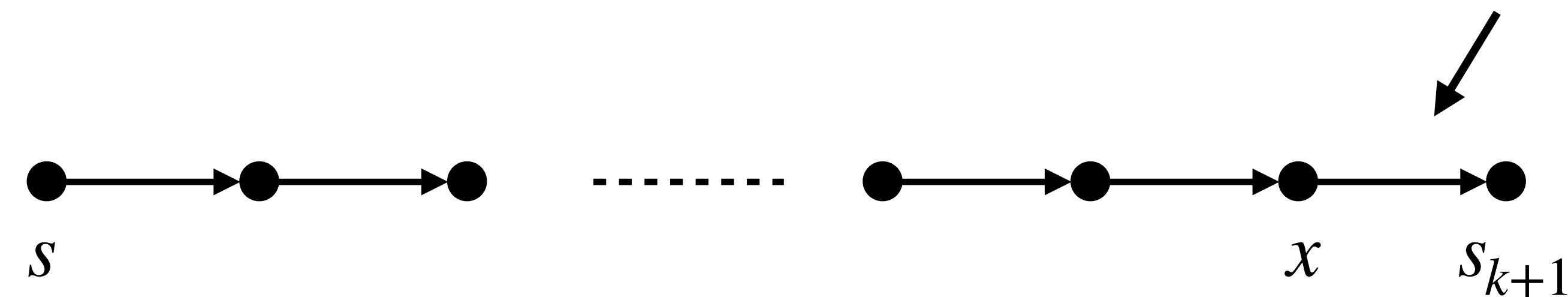
Let s_i be the i th nearest vertex to s . (Assume there are no ties and all the weights are positive.)

Dijkstra's algorithm first computes distance of s_1 , then s_2 's, then s_3 's, then s_4 's, and so on.

Suppose we have calculated the distances of $S = \{s_1, s_2, \dots, s_k\}$.

How can we compute distance of s_{k+1} ?

Shortest path to s_{k+1} from s .



Clearly, $d[s_{k+1}] = d[x] + w(x, s_{k+1})$.

We don't know x , so we compute this value over all $x \in S$ and pick the minimum one.

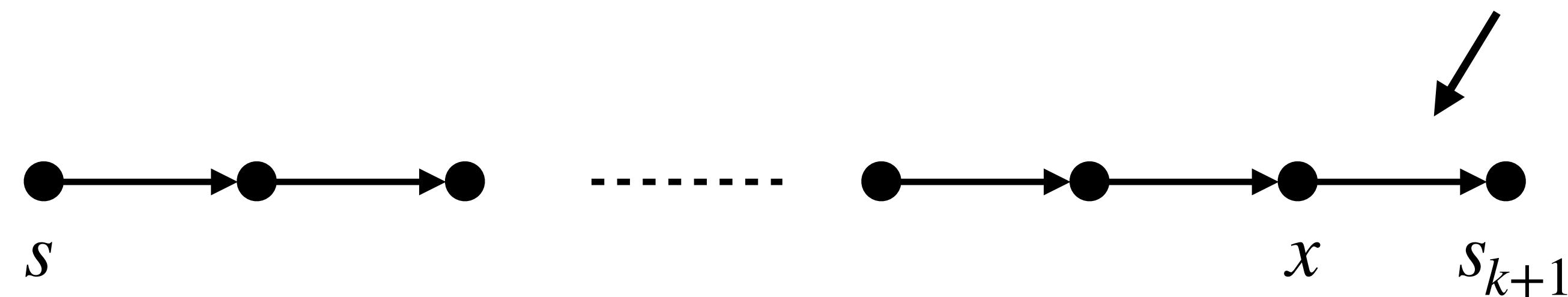
Dijkstra's Algorithm: Idea

Let s_i be the i th nearest vertex to s . (Assume there are no ties and all the weights are positive.)

Dijkstra's algorithm first computes distance of s_1 , then s_2 's, then s_3 's, then s_4 's, and so on.

Suppose we have calculated the distances of $S = \{s_1, s_2, \dots, s_k\}$.

How can we compute distance of s_{k+1} ?



Clearly, $d[s_{k+1}] = d[x] + w(x, s_{k+1})$.

We don't know s_{k+1} , so we compute this value over all $v \in V \setminus S$ and the one with minimum value will be s_{k+1} .

We don't know x , so we compute this value over all $x \in S$ and pick the minimum one.

Dijkstra's Algorithm: Sketch

Dijkstra's Algorithm: Sketch

Maintain a set of explored vertices S for which algorithm has found $d[u] = \delta(s, u)$:

Dijkstra's Algorithm: Sketch

Maintain a set of explored vertices S for which algorithm has found $d[u] = \delta(s, u)$:

Step 1: Initialise $S = \{s\}$, $d[s] = 0$.

Dijkstra's Algorithm: Sketch

Maintain a set of explored vertices S for which algorithm has found $d[u] = \delta(s, u)$:

Step 1: Initialise $S = \{s\}$, $d[s] = 0$.

Step 2: Choose an unexplored vertex v from $V(G) \setminus S$ which minimizes:

Dijkstra's Algorithm: Sketch

Maintain a set of explored vertices S for which algorithm has found $d[u] = \delta(s, u)$:

Step 1: Initialise $S = \{s\}$, $d[s] = 0$.

Step 2: Choose an unexplored vertex v from $V(G) \setminus S$ which minimizes:

$$\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$$

Dijkstra's Algorithm: Sketch

Maintain a set of explored vertices S for which algorithm has found $d[u] = \delta(s, u)$:

Step 1: Initialise $S = \{s\}$, $d[s] = 0$.

Step 2: Choose an unexplored vertex v from $V(G) \setminus S$ which minimizes:

$$\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$$

Add v to S and set $d[v] = \pi[v]$.

Dijkstra's Algorithm: Sketch

Maintain a set of explored vertices S for which algorithm has found $d[u] = \delta(s, u)$:

Step 1: Initialise $S = \{s\}$, $d[s] = 0$.

Step 2: Choose an unexplored vertex v from $V(G) \setminus S$ which minimizes:

$$\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$$

Add v to S and set $d[v] = \pi[v]$.

Step 3: Go to **Step 2** if it can be performed.